Thursday, December 1, 2022

December 2022 science summary

Victoria sunrise

Happy December,


In the spirit of the paper on gratitude below: thank you all for helping me to be a better scientist and a better person. Almost every month I get a note or two from someone who found the summary useful, or who had a question / critique / idea that I learned from. That engagement has helped me push myself to keep doing these, which in terms helps me be a bit more well-read. So thank you!

Also, while they're too long to summarize briefly like I do with papers, I want to recommend the books "Think Again" by Adam Grant and "Noise" by Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein. Taken together, they've given me a lot of ideas about how to get better at reevaluating my beliefs, improving how I review evidence and draw conclusions, and generate estimates. Email me if you want some notes I took on my favorite parts of each!


GRATITUDE:
As a follow-up to the Thanksgiving holiday, I wanted to share a review of a paper on gratitude by Wood et al. 2010. It's a broad review of research on the topic and fairly wonky, but I found a few things useful. I liked how table 1 lists complementary aspects of gratitude: noticing how grateful you are overall, feeling gratitude towards others, focusing on what you have (vs. what you lack), feelings of awe, expressing gratitude (internally and to others), being present, living to the fullest b/c of awareness that life is short, and feeling lucky when thinking about how things could be worse. They cover quite a lot of research on gratitude and how being more grateful is associated w/ better quality of life (although there's some question how much gratitude causes well-being vs. is just correlated). The biggest boost to feeling good came from writing a letter thanking someone and reading it to them in person, but keeping a daily diary of three things you're grateful for seems to be easier to keep up and helps you feel better for longer.


CLIMATE CHANGE
Reich et al. 2022 is an interesting experiment of how boreal forests might respond to 1.6C or 3.1C warming, using open-air heaters in an actual forest (as well as simulating reduced rainfall by covering some of the soil) to see how they respond. Conifers experienced slower growth (Fig 2) and higher mortality (Fig 1). How much varied by species, with balsam fir showing the worst impact. Compared to current conditions, warming or limited rain each reduced balsam fir growth by ~1/3, while the combination reduced growth by ~2/3. Seedling survival went down by ~40% at 1.6C, ~72% at 3.1C, and ~84% at 3.1C plus less rain. But others like jack pine had much smaller effects, and some trees like maples had similar survival rates and more growth under warming (even with less rain). So they predict that conifers will become less dominant, over the long term being replaced by deciduous trees but in the short term more likely replaced by invasive woody shrubs (since the deciduous trees aren't common enough to spread fast). There is an article about this written for general audiences at https://phys.org/news/2022-08-modest-climate-northernmost-forests.html


SUSTAINABLE RANCHING:
Santos et al. 2017 is an interesting paper on using fuzzy logic to assess beef sustainability in the Pantanal. As background - fuzzy logic doesn't mean 'sloppy reasoning' - it's actually a real thing which more or less centers on non-binary logic models. For example, old thermostats are non-fuzzy (they turn on when cold and turn off when warm enough), but newer ones are often fuzzy (adjusting fan speed, turning auxiliary heat on or off, etc. depending on performance). In this case, they take a ton of practical indicators, map each onto a 4 point scale, and combine them into a single "overall sustainability index" (see Figure 1). Check out Appendix I for the list of how well each indicator matched expert judgments.


OTTERS:
Valladares et al. 2022 used drones to figure out what kind of habitat giant otters in Peru most preferred. They found giant otters preferred oxbow lakes with the largest water surface area, the least floating vegetation (more open water), and more dense forest canopy cover along the banks of the lakes.



REFERENCES:
Reich, P. B., Bermudez, R., Montgomery, R. A., Rich, R. L., Rice, K. E., Hobbie, S. E., & Stefanski, A. (2022). Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923), 540–545. https://doi.org/10.1038/s41586-022-05076-3

Santos, S. A., de Lima, H. P., Massruhá, S. M. F. S., de Abreu, U. G. P., Tomás, W. M., Salis, S. M., Cardoso, E. L., de Oliveira, M. D., Soares, M. T. S., dos Santos, A., de Oliveira, L. O. F., Calheiros, D. F., Crispim, S. M. A., Soriano, B. M. A., Amâncio, C. O. G., Nunes, A. P., & Pellegrin, L. A. (2017). A fuzzy logic-based tool to assess beef cattle ranching sustainability in complex environmental systems. Journal of Environmental Management, 198, 95–106. https://doi.org/10.1016/j.jenvman.2017.04.076

Valladares, N. A., Pardo, A. A., Chiaverini, L., Groenendijk, J., Harrington, L. A., Macdonald, D. W., Swaisgood, R. R., & Barocas, A. (2022). High‐resolution drone imagery reveals drivers of fine‐scale giant otter habitat selection in the land‐water interface. Conservation Science and Practice, December 2021, 1–14. https://doi.org/10.1111/csp2.12786

Wood, A. M., Froh, J. J., & Geraghty, A. W. A. (2010). Gratitude and well-being: A review and theoretical integration. Clinical Psychology Review, 30(7), 890–905. https://doi.org/10.1016/j.cpr.2010.03.005


Sincerely,
 
Jon

Tuesday, November 1, 2022

November 2022 science summary

Jack o' lantern w bloodshot eyes
Greetings,

Happy belated Halloween!

This month I have four articles on different facets of climate change (drought, ecological adaptation, and mitigation through peatlands), plus one big new global paper on the environmental impact of food.

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon



FOOD / AGRICULTURE:
Halpern et al. 2022 is the latest paper to try and compare the global environmental footprint of almost all foods (both aquatic and terrestrial), using greenhouse gases (GHGs but excluding land use change), "blue" water consumption (from irrigation), nutrient pollution (N&P, excluding crop N fixing), and land use. Note that blue water consumption excludes rainfall, and focuses on evaporation & transpiration as opposed to "water use" (the amount pumped out) much of which returns to surface and ground water. This lets us compare the impact of different foods, look at which foods have the most total impact (and thus offer the most opportunity to improve via changes in practice or biology), and see which countries have the most environmental impact from food (India, China, the U.S., Brazil, and Pakistan - see Figs 2, 3, and especially 4). Spend some time with Fig 4, it's dense and interesting. For example, you can see that India has slightly more total impact than China, but produces substantially less food by all 3 metrics (calories, protein, and mass). Most of the data here are similar to what we've seen before, but still interesting (e.g., U.S. soy is 2.4 times more efficient than Indian soy). Reporting "cumulative" impacts can be confusing - wheat and rice have similar total impact in Fig 5, but Fig 6 shows that rice is far more inefficient per tons of protein produced). Fig 5 and 6 would be useful in looking at which crops and livestock species to focus on improved genetics or practices to have the most impact. But if you want to know "what should I eat" this paper makes it really hard to find that (Fig 6 is closest, or look at Supplementary Data 3 for country-specific "total environmental pressure" data using the food key from Table S6). So for example they find goats have a higher impact than cows, and in the US soy is the most environmentally efficient source of protein while sugar beets are the most environmentally efficient source of calories.


CLIMATE CHANGE & DROUGHT:
Cook et al. 2015 estimates the likelihood of summer droughts (June through August) in the American Central Plains and Southwest between 2050 and 2100. Their findings are striking, even under the RCP 4.5 climate scenario (which they put in the supplement, focusing instead on the much less likely RCP 8.5 scenario). They predict the following chances of a decadal (11 year) or multidecadal (35 year) drought: decadal ~94% Central Plains and ~97% Southwest, multidecadal ~73%  Central Plains and ~80% for Southwest (see Fig S13 on the past page of the supplement). That's pretty scary, and they further note this is drier than even the historically dry period from the years 1100-1300. However, this is a lot more pessimistic than the IPCC (as the authors acknowledge), and I'm not qualified to go deep enough in the methods to weigh in as to how likely this is. But as we have already seen out West, droughts lasting multiple years have very different implications both for communities and agriculture. Tree crops will be increasingly untenable as the risk of multi-year droughts increase, and farmers may have to switch to very different crops to make it through these dry periods.


CLIMATE ADAPTATION (ECOLOGICAL):
Moore and Schindler 2022 is an opinion piece arguing that more diverse strategies are needed to help prepare ecosystems for climate change. They argue that conservation needs to adapt to shifting ecosystems and unpredictable futures by maintaining complexity, especially by promoting enhanced gene flow and facilitating the ability of habitat to shift to new places as climate changes. Given uncertainty in climate changes and ecosystem response, they argue that refugia may not be as robust as promoting climate corridors and habitat heterogeneity. Local conservation work to address current stresses and future threats is another important aspect of improving resilience: by working on known threats we can make ecosystems more able to withstand the unknown. Finally, as ecosystems and populations shift, resource management needs to adapt to these new realities rather than sticking to long-term plans.


PEATLANDS - CLIMATE MITIGATION:
Richardson et al. 2022 estimates the potential climate mitigation benefits of rewetting drained peatlands (specifically pocosin - a bog found in the SE US dominated by trees and/or shrubs). They measured water table depth, soil characteristics, dissolved organic carbon, and emissions of CO2 & methand & nitrous oxide at 5 sites (3 drained, 1 restored, 1 natural). The drained peatlands emitted a net of 21.2 t CO2e / ha (Table 2). They conducted additional detailed measurements on the drained peatlands, and combined the data into a model to predict how water table would impact emissions. Methane and nitrous oxide were excluded since CO2 was responsible for 98% of CO2e (Fig 3). Validation found the model to be conservative and w/in 18% of measurements out of the training sample. The pocosin always emit more carbon than they absorb in fall and winter, but re-wetting peat resulted in them being a net sink in spring and summer. Rewetting from a water table 60 cm deep tp 30 cm deep cut annual net emissions by 91% (abstract says 94% but see Table 2 for the correct numbers). Rewetting from to 20 cm deep switched the pocosoins from a carbon source to a sink, sequestering 3.3 t CO2e / ha / yr. Re-wetting also reduces the risk of peat fires which would increase emissions much more. Finally, Table 3 has their estimate of how much restorable peatlands (drained peatlands currently used for agriculture or forest plantations) could be re-wetted. Note that Evans et al. 2021 earlier found that raising the water table to these levels are likely to reduce crop yields (or require a switch to different crops and cultivars), but that raising the water level to the bottom of the root zone is a clear win-win.

Goldstein et al. 2020 looks at peat fires in Indonesia and what causes them, especially the sub-surface fires which cause the most air pollution and can burn for a long time. Their answer: it's complicated. They essentially find three requirements for sub-surface fires: 1) drainage lowers the water table and dries out the peat, 2) fire is ignited (for one of many reasons), and 3) enough fuel is present (like tree logs) that the fire burns long enough to reach deeper layers (dry weather also has a big influence). Much of the widespread use of fire does NOT result in these deep fires, b/c either the site isn't dry enough or it burns often enough there is insufficient fuel on the surface. The authors try hard not to blame anyone for these fires, but do argue that major drainage projects are likely a dominant factor.


REFERENCES:

Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances, 1(1), 1–8. https://doi.org/10.1126/sciadv.1400082

Goldstein, J. E., Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., Vayda, A. P., Saharjo, B. H., & Cochrane, M. A. (2020). Beyond slash‐and‐burn: The roles of human activities, altered hydrology and fuels in peat fires in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 190–208. https://doi.org/10.1111/sjtg.12319

Halpern, B. S., Frazier, M., Verstaen, J., Rayner, P., Clawson, G., Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M., Moran, D., Nash, K. L., Többen, J., & Williams, D. R. (2022). The environmental footprint of global food production. Nature Sustainability. https://doi.org/10.1038/s41893-022-00965-x

Moore, J. W., & Schindler, D. E. (2022). Getting ahead of climate change for ecological adaptation and resilience. Science, 376(6600), 1421–1426. https://doi.org/10.1126/science.abo3608

Richardson, C. J., Flanagan, N. E., Wang, H., & Ho, M. (2022). Annual carbon sequestration and loss rates under altered hydrology and fire regimes in southeastern USA pocosin peatlands. Global Change Biology, July, 1–15. https://doi.org/10.1111/gcb.16366


Sincerely,
 
Jon
 
p.s. the photo was my attempt to make a Jack o 'lantern w/ bloodshot eyes

Monday, October 3, 2022

October 2022 science summary

Calli & Jon on porch

Greetings,


This month I am summarizing two science articles on climate change and one on conservation prioritization

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).

CONSERVATION PRIORITIES:
Belote et al. 2021 is a great analysis comparing how different ways of identifying spatial conservation priorities overlap and conflict in the lower 48 states of the US. They focus on 4 groups of vertebrates (mammals, birds, amphibians, and reptiles), and 4 methods of prioritizing: species richness, rarity-weighted richness, and two Zonation approaches that favor complementarity / representation (ABF favors species richness, CAZ favors rarity). Fig 1 has the most interesting maps if you want to compare the approaches, and Fig 3 highlights the places with the most agreement across models that they are in the top 30% of options. It's a great way to see how your values and methods can affect your results (but also that some places are pretty agreed on priorities). Two things to contrast with the NatureServe "map of biodiversity importacet" - that analysis includes plants and some invertebrates (this does not), and NatureServe focuses on imperiled species while this is threat-blind. One last note on the zonation approaches - these work best as a complete set; if you pick and choose among them they don't perform nearly as well, and it's rare that science recommendations are ever taken up entirely. But conversely a focus solely on richness or rarity misses lower diversity ecosystems and wide-ranging species.


CLIMATE CHANGE:
Temmink et al. 2022 is an overview of carbon storage and cycling in wetlands. They note peatlands and coastal wetlands have much higher carbon stock density than forests or oceans, and also sequester more carbon each year (see the figure in the Review Summary for a nice overview, or Fig 1 for more detail). They also focus on how healthy wetlands have feedbacks that support high productivity and/or low decomposition (see Fig 2), but that people are disrupting those feedbacks. They show how much of these ecosystems have been lost already, and how fast they are disappearing (Table 1) and estimate this amoutns to 500 million metric tons of C lost each year. They closeby arguing that keeping wetlands intact is key for climate mitigation. One caution though - they focus only on carbon, and some wetlands emit quite a lot of methane and nitrous oxide. Those are much stronger GHGs than CO2, so the net climate benefit of wetlands is smaller than you'd think from looking at carbon alone.

Law et al. 2018 is an analysis of how more trees in Oregon (planting, cutting less often, and halting cutting) can lead to more climate mitigation benefits and cobenefits of water availability (maybe, stay tuned on that). From 2011-2015, OR forests already on net sequestered the equivalent of 72% of OR's total GHGs (Fig 2), and they think that could be boosted by 56% with a series of programs. See Figure 3 for this potential, but note the bars each represent a single decade (and the lower figure is annual change within that decade), with cumulative results from 2015-2100 showing up as numbers in italics OVER the bars. This confused me pretty thoroughly, and it looks to me from the Figure like annual "net ecosystem carbon balance" (~=net carbon sequestered) by 2100 would increase by ~1.2 Tg C / yr, not the 2-3 they say in the text. They also find that using harvest residues for bioenergy would lead to a net increase in emissions (even assuming 1/2 of residues replace coal or natural gas). One thing that struck me as very odd: they propose afforesting grass crops which are irrigated but not used for food or forage, and claiming water will be freed up by doing so. But I can't figure why someone would irrigate grass if it wasn't used for food (or things like lawns or golf courses which forests wouldn't be compatible with)- maybe it's literally fields to produce grass seed sold for lawns?
Peter Ellis from TNC had this take which I found helpful (that this shouldn't be taken as having national implications): "The study is constrained to the Pacific Northwest (PNW). If you care about carbon, you can never really beat leaving a PNW forest alone. No attempts to sell the idea of mitigation through bioenergy or wood product storage are going to beat carbon storage in forests in a region where: 
•    Trees are largest in the world
•    They take forever to decompose, so coarse woody debris storage is really important.
Their proposal for Oregon’s forest actually makes a lot of sense to me: 'reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increased net ecosystem carbon balance by 56% by 2100'"

REFERENCES:

Belote, R. T., Barnett, K., Dietz, M. S., Burkle, L., Jenkins, C. N., Dreiss, L., Aycrigg, J. L., & Aplet, G. H. (2021). Options for prioritizing sites for biodiversity conservation with implications for “30 by 30.” Biological Conservation, 264, 109378. https://doi.org/10.1016/j.biocon.2021.109378

Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P. C., & Harmon, M. E. (2018). Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences, 115(14), 3663–3668. https://doi.org/10.1073/pnas.1720064115

Temmink, R. J. M., Lamers, L. P. M., Angelini, C., Bouma, T. J., Fritz, C., van de Koppel, J., Lexmond, R., Rietkerk, M., Silliman, B. R., Joosten, H., & van der Heide, T. (2022). Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science, 376(6593). https://doi.org/10.1126/science.abn1479


Sincerely,
 
Jon
 
p.s. This is a recent picture of me and my neighbor's adorable snaggletoothed dog Calli on our porch (we were dogsitting).

Thursday, September 1, 2022

September 2022 science summary

Goldfinches on cutleaf coneflowers

Hi,


First I wanted to say how sorry I was to hear that one of the lead authors I highlighted last month (Jonathan Higgins) has since passed away. Higs was a force of nature and he will be missed by many. I'm very glad that my last email exchange with him was about how useful his paper was and the impact I thought it would have, which made him very happy.

This month I am summarizing three articles on climate change, one on tropical forest recovery, and one on conservation and human well-being. If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).



CLIMATE CHANGE:
Gopalakrishna et al. 2022 highlights the need for local studies of climate mitigation potential. They found that if you avoid conflict w/ ag lands, forest restoration potential is lower in India than global estimates (and they suspect the same would be true in other tropical countries with lots of ag lands). They found 1.6 million ha of lands that could be restored; the plurality was degraded forest followed by scrub. If those lands were restored, they estimate it could provide 61.3 Mt (million tons) of carbon sequestration. They also roughly estimate 14.7 million ha of ag lands could incorporate agroforestry practices for up to another 98 Mt of carbon over 30 years. So the key take-aways here are a) we can't rely on global estimates for in-country work and b) if we can find ways to add trees to lands producing food w/o impacting food production (which is sometimes possible) there is a lot of opportunity there.

Noon et al. 2022 is a fantastic resource mapping global priority habitats for conservation to protect and/or manage to slow climate change. They focus on "irrecoverable carbon" - meaning carbon that will take 30+ years to recover after it is lost due to conversion or degradation. Fig 1 has a global map of irrecoverable carbon with a few hotspots highlighted (or use this web map which has slightly different symbology https://irrecoverable.resilienceatlas.org/map). But more useful is Fig 2 which splits out the carbon by how it's threatened (by land conversion, climate change, both, or neither) to identify where protection vs. management makes sense. Note that in Fig 2 darker colors mean more carbon within each of the four risks, but they are not consistent across the four risks (to see the highest total carbon you still need Fig 1). Fig 3 highlights how uneven irrecoverable carbon in, 50% of it is in just 3% of global land area! If you work on carbon in nature, read the whole paper. Many thanks to the authors who kindly answered my questions and sent me their data so I could make my own maps!

Reed 2021 tackles the thorny issue of how montane meadowns in California (wet grasslands in mountains) mitigate or worsen climate change. They found that a) these ecosystems store a lot of carbon, b) on net they can be either a big carbon source (10/13 sites) or a big carbon sink (3/13 sites) c) the sites that were a source had similar plant species to sink sites, but typically had groundwater closer to the surface, more root biomass, and less bare ground, d) methane emissions were consistently low, and e) they're not sure what caused most meadows to become net carbon sources (the high carbon stock indicate they all used to be sinks) but think it depends mostly on how much water and dissolved carbon flows into the meadows from uplands and thus upland forest loss is a likely culprit. The discussion is interesting - they hypothesize that hydrologic restoration in the meadow and upland forest management could slow carbon losses but think it's a safer bet to try and maintain sites that are currently net carbon sinks.


FOREST RESILIENCE / RECOVERY:
Poorter et al. 2021 look at how long it took for tropical forests (in Central & South America plus West Africa) to recover after deforestation, finding them pretty resilient. They found recovery to 90% of old growth values took 1-9 yrs for soil, plant function took 3-27 yrs, forest structure took 27-119 (tree size variation 27, max tree size 49, biomass 119), species diversity took 37-59, and species composition took 120 years. They thus argue secondary (regrowing) forests are still ecologically important and deserve conservation (protection, restoration, and management). Note that most of their sites had low to mid intensity land use after deforestation like swidden agriculture, so soil degradation was relatively minor. It's short and worth the read, but as is common w/ papers in Science I found the figures hard to decipher but useful once you put in the time. Fig 1B shows roughly how quickly different attributes recover over time (soil is brown, plant function is purple, structure is green, and diversity is turquoise); Fig 2 is similar but breaks out sub-indicators and is more precise; and Fig 3D is my favorite (how long it takes each attribute to return to 90% of old growth values). Here are the abbreviations since they are not defined in a single place! 
AGB=aboveground biomass
BD=soil bulk density
C=soil carbon
DMAX=maximum tree diameter
N=soil nitrogen
NF=proportional basal area of nitrogen-fixing species
SC=species composition (how similar abundance of each species is to old growth)
SD=Simpson diversity (~diversity of common species)
SH=structural heterogeneity (variation in tree size)
SR=species richness (number of species present)
SLA=community-weighted mean specific leaf area
WD=community-weighted mean wood density


NATURE & PEOPLE:
Huynh et al. 2022 is a global literature review of 300 peer-reviewed papers on the many intangible ways nature impacts people (what they call "cultural ecosystem services" or CESs). So it leaves out physical effects like providing food, clean water, reducing storms, etc. (which are well studied) and focuses on things like recreation, spiritual fulfillment, aesthetics, etc. If you enjoy taxonomies / classifications you will like this paper, and if not, you will find it a slog, since the heart of it is a framework to classify many ways people and nature interact (see Table 1 and Figure 2). But it's worth at least reading through Table 1 and pondering a bit. Ssome like how nature can help people bond ('Cohesive') were new to me but rang true; others felt like splitting hairs (e.g., splitting spiritual experiences into 'Intuitive' and 'Transcendentive'). Beyond the framework, they found 86% of over 1,000 observations positively impacted people (more studies looked at this and there is likely bias in the lit - it's not necessarily that nature is inherently overwhelmingly beneficial). Their expert judgment is that the biggest benefits come from mental and physical health, particularly from recreation (including tourism) and aesthetic values (the size of boxes in Fig 3 shows how many studies they had for each of 227 'pathways').The biggest negative impacts came from concern about safety ('Apprehensive'), or the loss of ecosystem services when nature is damaged or lost ('Destructive' - although it seems odd to me to mix that in with actual harms from nature itself), with only a few 'Irritative' (annoyance or disgust, e.g., from wildlife noise or excrement). In the end the paper gave me 'Cognitive' benefits but was not very 'Satisfactive.' The Washington Post has an overview of the paper here: https://www.washingtonpost.com/climate-solutions/2022/08/05/nature-study-impact-hiking-outdoors/


REFERENCES:

Gopalakrishna, T., Lomax, G., Aguirre‐Gutiérrez, J., Bauman, D., Roy, P. S., Joshi, P. K., & Malhi, Y. (2022). Existing land uses constrain climate change mitigation potential of forest restoration in India. Conservation Letters, December 2021, 1–11. https://doi.org/10.1111/conl.12867

Huynh, L. T. M., Gasparatos, A., Su, J., Dam Lam, R., Grant, E. I., & Fukushi, K. (2022). Linking the nonmaterial dimensions of human-nature relations and human well-being through cultural ecosystem services. Science Advances, 8(31), 1–22. https://doi.org/10.1126/sciadv.abn8042

Noon, M. L., Goldstein, A., Ledezma, J. C., Roehrdanz, P. R., Cook-Patton, S. C., Spawn-Lee, S. A., Wright, T. M., Gonzalez-Roglich, M., Hole, D. G., Rockström, J., & Turner, W. R. (2022). Mapping the irrecoverable carbon in Earth’s ecosystems. Nature Sustainability, 5(1), 37–46. https://doi.org/10.1038/s41893-021-00803-6

Poorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., Chazdon, R. L., Farrior, C. E., Kambach, S., Meave, J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Almeyda Zambrano, A. M., Amani, B., Andrade, J. L., Brancalion, P. H. S., Broadbent, E. N., … Hérault, B. (2021). Multidimensional tropical forest recovery. Science, 374(6573), 1370–1376. https://doi.org/10.1126/science.abh3629

Reed, C. C., Merrill, A. G., Drew, W. M., Christman, B., Hutchinson, R. A., Keszey, L., Odell, M., Swanson, S., Verburg, P. S. J., Wilcox, J., Hart, S. C., & Sullivan, B. W. (2021). Montane Meadows: A Soil Carbon Sink or Source? Ecosystems, 24(5), 1125–1141. https://doi.org/10.1007/s10021-020-00572-x

 

p.s. the photo shows a goldfinch amidst my cutleaf coneflowers, watching me watch him (these flowers are only ~5 ft from a living room window)

Monday, August 1, 2022

August 2022 science summary

Bubble in garden

Hi,

After publishing no peer-reviewed science in 2021, two papers I'm a co-author on were published this month!

The first (Vijay et al. 2022) looks at how different conservation goals for people and nature tend to align and conflict: identifying both win-wins and trade-offs to inform conservation priorities. The second (James et al. 2022) is an analysis of scientific publications by staff at The Nature Conservancy split by gender, along with recommendations to improve the ability of women (especially from the Global South) to publish research. Let me know if you have questions about either after reading the summaries below!

I've also got an interesting article on the IUCN Red List of threatened ecosystems, and a great framework to think through freshwater conservation needs and approaches.

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).

GENDER AND SCIENCE:
James et al. 2022 analyzed almost 3,000 peer-reviewed scientific publications with at least one author from The Nature Conservancy (TNC) by gender of the author(s) - all that we could find from 1968 to 2019. Roughly 1/3 of the TNC authors and authorships (# authors * # papers) were women, even though 45% of conservation and science staff are women. Most authorships were in the U.S. - 85% overall and 90% for women. This means men (especially men in the United States) are publishing at a significantly higher rate than women. We close with several recommendations to help shrink this gap. Some are aimed at individual scientists (e.g., self-education on bias and systemic barriers, asking men to collaborate more with women as male-led papers have far fewer women co-authors than female-led papers, and asking lead authors to be more inclusive in determining whose contributions merit being listed as an author), and others are aimed at organizations (e.g., providing more resources and support for women who wish to publish, especially for women who don't speak English as a first language). I learned a ton from both the data and my co-authors on this one, and we have another 1-2 papers on the subject coming which will get into the results of a survey the lead author did to get deeper into the experience of how gender impacts not only publication but perceptions of influence and career advancement. Note that our available data listed everyone's gender as male, female, or unknown - apologies to those who we misgendered or otherwise failed to reflect their lived experience with a relatively simple binary analysis (especially as gender diverse people appear to be even more underrepresented in science publications).
You can read blogs about the article at https://www.nature.org/en-us/newsroom/published-science-gender-gap/ and https://blog.nature.org/science/science-brief/conservation-science-publishing-has-a-gender-problem/


CONSERVATION PRIORITIZATION:
As conservation organizations try to work towards multiple goals, Vijay et al. 2022 asks whether we can protect places that efficiently advance multiple goals at once, or if we have to pick between places good for one goal but that perform poorly for others. We looked at opportunities to advance five benefits by protecting land in the contiguous United States: vertebrate species richness, threatened vertebrate species richness, carbon storage, area protected, and recreational usage. Specifically we looked at Return On Investment (ROI) meaning the benefit score compared to the cost of the land (as a proxy for difficulty of protecting it). The results are a bit complicated: this paper focused only on unprotected habitat which is predicted to be converted by 2100, and with that framing the four environmental benefits were both highly correlated overall (r 0.89-0.99) and had a lot of the "top sites" in common (the highest scoring places for one benefit often had a top score for another benefit, 32-79% of the time). Recreation had less in common with environmental benefits (r 0.5-0.52, only 7-13% of the top sites were also a top site for another benefit). That still shows a lot of opportunity for win-wins across the nation! However, if you DON'T constrain conservation to places where land use is projected to change by 2100, win-wins are harder to find (as shown in the Supplementary Information). Species richness and area were the most compatible with a high r of 0.58 and 24% of top sites in common, and area and recreation were the least aligned, with an r of -0.65 and no top sites in common. There's a lot of interesting stuff in the paper (including comparing how three hypothetical policy scenarios score on each benefit), and I've written a slightly longer summary here: https://www.linkedin.com/posts/sciencejon_conservation-science-goalsetting-activity-6948122284528197632-OH0S/

You're probably familiar with the IUCN's Red List of Threatened Species - which ranks how at risk species around the world are. Comer et al. 2022 is an analysis for the Red List of ECOSYSTEMS for North America - looking at the risk of ecological collapse for 655 terrestrial ecosystems considering: current extent, how much historic extent has been lost, degradation from historic fire regime, and disruption of biotic processes (focused on invasive species and landscape fragmentation). They found 1/3 of ecosystems were threatened, and Fig 2 shows which types of ecosystems were the most threatened (like Mediterranean Scrub & Grassland, which had the highest % of extent that was threatened, and Tropical Montane Grassland & Shrubland, which had the highest % Critically Endangered). Fig 1 has a great pair of maps showing both current and historic extent of all assessed ecosystems (colored by threat level). There is also an excellent discussion of the challenges and limitations in doing an analysis like this (section 4.2). Despite these limitations, this provides a useful complement to species-focused prioritizations (like range-size rarity).


FRESHWATER CONSERVATION:
Higgins et al. 2021 (from a team of scientists and lawyers) argues that since freshwater species are declining faster than terrestrial species, and effective durable freshwater conservation is typically harder to get right, we need more thoughtful design of freshwater protection and management. They offer a framework to do that, beginning with key questions (about things like what you value, key ecological attributes [KEAs] to conserve, threats to ecosystems, and protection options), which is summarized in Figure 1. Table 1 is extremely useful: it outlines 5 key ecological attributes that freshwater systems need: 1) hydrologic regime / healthy flow, 2) connectivity , 3) water quality (nutrients, sediment, toxins, etc.), 4) habitat (riparian, in-stream, other wetlands), 5) species (diversity, abundance, invasives). Table 1 also lists threats, Table 2 has conservation options, and Table 3 has helpful and relatively simple examples to get you started. Doing this work is hard! But I found this article to be a great challenge to keep thinking beyond protecting the land around freshwater ecosystems, and planning for what they need over the long-term.

REFERENCES:

Comer, P. J., Hak, J. C., & Seddon, E. (2022). Documenting at-risk status of terrestrial ecosystems in temperate and tropical North America. Conservation Science and Practice, 4(2), 1–13. https://doi.org/10.1111/csp2.603

Higgins, J., Zablocki, J., Newsock, A., Krolopp, A., Tabas, P., & Salama, M. (2021). Durable Freshwater Protection: A Framework for Establishing and Maintaining Long-Term Protection for Freshwater Ecosystems and the Values They Sustain. Sustainability, 13(4), 1950. https://doi.org/10.3390/su13041950

James, R., Ariunbaatar, J., Bresnahan, M., Carlos‐Grotjahn, C., Fisher, J. R. B., Gibbs, B., Hausheer, J. E., Nakozoete, C., Nomura, S., Possingham, H., & Lyons, K. (2022). Gender and conservation science: Men continue to out‐publish women at the world’s largest environmental conservation non‐profit organization. Conservation Science and Practice, January, 1–9. https://doi.org/10.1111/csp2.12748

Vijay, V., Fisher, J. R. B., & Armsworth, P. R. (2022). Co‐benefits for terrestrial biodiversity and ecosystem services available from contrasting land protection policies in the contiguous United States. Conservation Letters, February, 1–9. https://doi.org/10.1111/conl.12907


Sincerely,
 
Jon
 
p.s. This large bubble is over my 'butterfly garden' which is currently full of flowers and pollinators!

Wednesday, July 6, 2022

Two new papers: how gender impacts science publishing & conservation prioritization

After having 0 papers published in 2021, I was on author on two papers published last week (both open access - click the author name to go to the paper)! Here's a quick summary of each:

James et al. 2022 analyzed almost 3,000 peer-reviewed scientific publications with at least one author from The Nature Conservancy (TNC) by gender of the author(s) - all that we could find from 1968 to 2019. Roughly 1/3 of the TNC authors and authorships (# authors * # papers) were women, even though 45% of conservation and science staff are women. Most authorships were in the U.S. - 85% overall and 90% for women. This means men (especially men in the United States) are publishing at a significantly higher rate than women. We close with several recommendations to help shrink this gap. Some are aimed at individual scientists (e.g., self-education on bias and systemic barriers, asking men to collaborate more with women as male-led papers have far fewer women co-authors than female-led papers, and asking lead authors to be more inclusive in determining whose contributions merit being listed as an author), and others are aimed at organizations (e.g., providing more resources and support for women who wish to publish, especially for women who don't speak English as a first language). 

I learned a ton from both the data and my co-authors on this one, and we have another 1-2 papers on the subject coming which will get into the results of a survey the lead author did to get deeper into the experience of how gender impacts not only publication but perceptions of influence and career advancement. Note that our available data listed everyone's gender as male, female, or unknown - apologies to those who we misgendered or otherwise failed to reflect their lived experience with a relatively simple binary analysis (especially as gender diverse people appear to be even more underrepresented in science publications).

You can read blogs about the article at https://www.nature.org/en-us/newsroom/published-science-gender-gap/ and https://blog.nature.org/science/science-brief/conservation-science-publishing-has-a-gender-problem/ or the full paper is at https://onlinelibrary.wiley.com/doi/10.1111/csp2.12748


As conservation organizations try to work towards multiple goals, Vijay et al. 2022 asks whether we can protect places that efficiently advance multiple goals at once (win-wins), or if we have to pick between places good for one goal but that perform poorly for others (trade-offs). We looked at opportunities to advance five benefits by protecting land in the contiguous United States: vertebrate species richness, threatened vertebrate species richness, carbon storage, area protected, and recreational usage. Specifically we looked at Return On Investment (ROI) meaning the benefit score compared to the cost of the land (as a proxy for difficulty of protecting it). 

The results are a bit complicated: this paper focused only on unprotected habitat which is predicted to be converted by 2100, and with that framing the four environmental benefits were both highly correlated overall (r 0.89-0.99) and had a lot of the "top sites" in common (the highest scoring places for one benefit often had a top score for another benefit, 32-79% of the time). Recreation had less in common with environmental benefits (r 0.5-0.52, only 7-13% of the top sites were also a top site for another benefit). That still shows a lot of opportunity for win-wins across the nation! However, if you DON'T constrain conservation to places where land use is projected to change by 2100, win-wins are harder to find (as shown in the Supplementary Information). Species richness and area were the most compatible with a high r of 0.58 and 24% of top sites in common, and area and recreation were the least aligned, with an r of -0.65 and no top sites in common. 

There's a lot of interesting stuff in the paper (including comparing how three hypothetical policy scenarios score on each benefit), and I've written a slightly longer summary here: https://www.linkedin.com/posts/sciencejon_conservation-science-goalsetting-activity-6948122284528197632-OH0S/ or the full paper is at https://onlinelibrary.wiley.com/doi/10.1111/conl.12907

Friday, July 1, 2022

July 2022 science summary

Bromeliad fly (Copestylum) on spiderwort (Tradescantia)

Hello,


This month is another grab bag: one paper on equity in fire management, two on biodiversity data, one asking how much conservation has helped species, and one pretty bad one on how ag practices impact nutrients.

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).

FIRE MANAGEMENT:
Anderson et al. 2020 found that rich white communities who had a fire nearby tend to get additional prescribed fire (even when not needed). This is partly due to their ability to self-advocate at relevant planning meetings. It raises equity and social justice concerns about how we could instead base fire management on factors like social and/or ecological vulnerability. As context, here is a map showing how wildfire risk varies across the U.S.: https://www.nytimes.com/interactive/2022/05/16/climate/wildfire-risk-map-properties.html


BIODIVERSITY DATA:
Saran et al. 2022 has a good overview of biodiversity information portals, 16 global (Table 1) and 5 country-specific (from Australia, Canada, India, and the U.S., Table 2). It's a great complement to Nicholson et al. 2021 (an overview of ecosystem indicators) by providing actual data sources and some info about what each portal includes. The paper certainly isn't "comprehensive" as the title advertises, but it's a great start and I learned about some new useful resources by reading it.

Before threatened species can get protection, they need to be assessed to document how vulnerable they are. But there is a substantial backlog of species waiting to be assessed. Levin et al. 2022 offers a fairly simple (but ultimately unsuccessful) way to re-prioritize unassessed species for the IUCN red list to allow a better chance of assessing the ones that are in trouble so they can get protection. They use a rapid estimate of "extent of occurrence" (the species' range and spatial distribution of threats) as a proxy for vulnerability. At first it's exciting to see that it was 92% accurate at identifying which species were of the Least Concern (showing potential to flag species not worth assessing). But two questions are more relevant (and Fig 1 has the answers): what % of vulnerable species does it correctly recommend assessing (40%) and what % of recommendations for assessment are for species that are actually vulnerable (23%). The discussion has interesting notes on some of the aspects that confused the model (like 5 ash app threatened by Emerald Ash Borer and the American Chestnut threatened by blight) - widespread spp. hit hard by invasives are challenging to accurately assess using simple approaches like this. Hopefully the next iteration of the tool will be more successful, if they could substantially reduce false negatives for vulnerable species it could provide assessment priorities directly, or if they could substantially reduce false positives for vulnerable species it could help by indicating species that likely shouldn't be assessed.


CONSERVATION IMPACT:
Jellesmark et al. 2022 is a global (see Fig 1 map) preprint looking at how conservation has impacted targeted vertebrate species (by comparing pairs of populations targeted for conservation with those in the same country that did not receive conservation attention). I honestly don't know enough about the underlying data source (Living Planet Database) to speak to the reliability of their results (I'll wait for peer review for that, there is at least one very important typo where they use "invertebrate" when they clearly mean "vertebrate"). They found that population size of assessed vertebrates dropped 24% over 46 years, but estimate that without conservation it would have dropped 32% (and this likely underestimates the impact of conservation). They split out conservation actions into 7 groups (land/water protection, land/water mgmt, species mgmt, education/awareness, law/policy, livelihoods/incentives, and external capacity building), and capacity building followed by the first three showed the strongest results (Fig 5).


SUSTAINABLE AGRICULTURE:
Montgomery et al. 2022 asks how nutrients from ‘regenerative’ farms (that use no-till, crop  rotations, and cover crops) differ from other farms, but I wouldn't recommend it. This paper is pretty weak methodologically, results were inappropriately highlighted and over-interpreted, and the results I initially planned to write about didn’t hold up when I looked at raw data. Some key caveats: it is a very small sample size, 4/5 authors have financial interests the paper furthers, only one author appears to be a scientist (a geomorphologist), and the methods are thin and read like they may have gone looking for pairs of farms that would support the desired narrative (plus they used a very rough method to measure organic matter). At first I thought the most interesting / meaningful results are for cabbage: 10 assessed nutrients were substantially higher on regenerative farms, compared to 4 that were the same, 4 that were substantially lower, and 3 not assessed. But when you dive in, that 70% difference in vitamin E is from 0.004 to 0.007 mg/100g (essentially nil). Ditto with wheat results, 50% more calcium than “almost none” is still almost none. The animal results are hard to interpret because they don’t provide enough detail on differences between ‘regenerative’ vs. ‘conventional’ (although findings that grass-finished beef have more nutrient content have been reported in other lit, in alignment w/ results here). Some results look more meaningful (20% more vitamin C in cabbage is worthwhile) but there is such variation in the soil organic matter and soil health across the farms it’s really hard to know what is significant and what is accidental. One last note - 'regenerative' here almost certainly means 'genetically modified’ for most crops, since it’s hard to do no-till without them.


REFERENCES:

Anderson, S., Plantinga, A., & Wibbenmeyer, M. (2020). Inequality in Agency Responsiveness: Evidence from Salient Wildfire Events (Issue December). https://www.rff.org/publications/working-papers/inequality-agency-responsiveness-evidence-salient-wildfire-events/

Jellesmark, S., Blackburn, T. M., Dove, S., Geldmann, J., Visconti, P., Gregory, R. D., McRae, L., & Hoffmann, M. (2022). Assessing the global impact of targeted conservation actions on species abundance. BioRxiv, 2022.01.14.476374. https://doi.org/10.1101/2022.01.14.476374

Levin, M. O., Meek, J. B., Boom, B., Kross, S. M., & Eskew, E. A. (2022). Using publicly available data to conduct rapid assessments of extinction risk. Conservation Science and Practice, November 2020, 1–9. https://doi.org/10.1111/csp2.12628

Montgomery, D. R., Biklé, A., Archuleta, R., Brown, P., & Jordan, J. (2022). Soil health and nutrient density: preliminary comparison of regenerative and conventional farming. PeerJ, 10, e12848. https://doi.org/10.7717/peerj.12848

Saran, S., Chaudhary, S. K., Singh, P., Tiwari, A., & Kumar, V. (2022). A comprehensive review on biodiversity information portals. Biodiversity and Conservation, 0123456789. https://doi.org/10.1007/s10531-022-02420-x

Sincerely,
 
Jon
 
p.s. This photo is of what I think is a bromeliad fly (Copestylum) on a Tradescantia flower in my garden. First time I have seen one!