Saturday, October 12, 2019

Paper on what gets people to adopt new practices

I've already mentioned two earlier papers I've published on the adoption of a new conservation planning framework (Conservation by Design 2.0, or CbD 2.0 for short) being rolled out by The Nature Conservancy. Those covered knowledge diffusion and how 'boundary spanners' can increase it. The latest (probably the last) paper from that research is now available here:
https://journals.sagepub.com/doi/full/10.1177/1086026619880343 

Here's the submitted version of the article (not the nicely formatted one, which you need a subscription for): http://fish.freeshell.org/publications/Reddy2019-BehaviorChange.pdf

This paper is not very accessible to a broad audience, so here's a short summary:
Reddy et al. 2019 looked at the adoption of a new conservation planning framework (Conservation by Design 2.0) being rolled out by The Nature Conservancy. Some staff & teams were early adopters, but it was slow to spread. But people who worked on projects with early adopters from different teams were more likely to use the new practices. Having early adopters work with people from different teams who are slower to change can speed exposure to new ideas and help everyone to learn and adapt. Supervisors should encourage talent-sharing and learning exchanges so this happens more.

That's about it!

Tuesday, October 1, 2019

October 2019 science journal article summary

Monstera deliciosa
Greetings,

This month I focused mostly on climate change. How does the picture above relate? It doesn't, but this fruit rind reminded me of spatial planning hexes which made me smile (bonus points if you can guess the fruit it came from).

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon

RESEARCH IMPACT:
Last month I sent 10 articles with advice on how to improve the impact of research. Edwards & Meagher 2019 offers a framework you can use to evaluate that impact. I'd recommend focusing on Table 1, which has an excellent list of questions to consider. They can help to better understand what changed (or what you hope will change, since setting impact goals up front is ideal), and how / why it changed (or didn't). The authors argue that conceptual models or results chains (theory of change diagrams) are often useless because sometimes there are interesting feedback loops or non-linear aspects. But while this approach can be flawed and has limits, I've found that situations where it's unhelpful are the exception rather than the rule, and the authors don't make a strong case otherwise. I also didn't find the results where the impact framework was applied to case studies to be very useful, but I really like the questions they asked up front.

CLIMATE CHANGE:
Smith et al. 2019 evaluates how six options for greenhouse gas (GHG) removal compare in how well they relate to the Sustainable Development Goals (positively and negatively). They look at reforestation (and afforestation), wetland restoration (coastal and freshwater), soil carbon sequestration, biochar, terrestrial enhanced weathering, and bioenergy w/ carbon capture and storage (BECCS). It's a dense paper worth reading for all the info, especially the figures which are great summaries. One interesting take-away is that restoring wetlands and boosting soil carbon are 'no regrets' strategies with almost entirely positive impacts (although soil as a mitigation strategy has some uncertainty and limits).

Busch et al. 2019 maps where tropical reforestation (and avoided deforestation) is practical at different carbon prices (they report mostly on $20/t CO2e and $50/t). Fig 2 is a great summary of where the most opportunity is. Overall at $20/t they estimate 60.8 Gt CO2e of opportunity (55.1 avoided deforestation, 5.7 reforestation), and at $50/t they estimate 123.4 Gt opportunity (108.3 avoided deforestation, 15.1 reforestation). One interesting finding is that while avoided deforestation is much more cost-effective in general, in 21 countries (mostly African) there is more low-cost opportunity for reforestation. This highlights the need to avoid a one-size-fits-all approach.

There has been considerable discussion on how climate change will impact crop yields. Most predicted impacts are negative (drought stress, less consistent rain, and increasing pests) although some are positive (carbon fertilization, and shifting some marginal lands to be more suitable for crops). Ray et al. 2019 looks at 40 years of global weather data & crop yield data for the top 10 crops, and concludes that those impacts have already started to happen. They estimate that we've probably already lost ~1% of calories we would have had without climate change. Palm oil had the most lost potential, while soy has benefited overall. Check out Figure 1 which maps estimated impacts by each crop around the world.

Roque et al. 2019 is the first test in vivo of the seaweed Asparagopsis to reduce enteric methane from cattle, which is a big deal. The higher dose cut cattle methane emissions per unit of milk by 60% (despite slightly lower weight gain and milk production). Note that all studied cattle were also fed more fiber than usual, which could have increased the size of that effect. More research is needed to: replicate this, look at beef cattle, fully account for GHG changes, and explore impacts on meat and milk quality.

Walsworth et al. 2019 argues that to help species adapt to climate change,  we should focus on protecting a diversity of habitats and genetic differences in populations (plus connectivity between habitat), rather than focusing on 'climate refugia' (colder areas species can move to). This can enable heat-resistant populations to move to other areas where they can interbreed and help other populations adapt. It's a reasonable argument, but note that it's based on a very simple coral reef model. So future work needs to look at this empirically and test it on land and in fresh water.

Realmonte et al. 2019 looked at the global potential impacts of direct air carbon capture and storage (DACCS) tech (splitting out more and less mature versions). They compare scenarios using only reforestation vs. also including bioenergy w/ carbon capture and storage (BECCS) vs. also including DACCS. Their key findings are that having DACCS widely available and effective will help to both meet Paris goals, and to reduce total costs of mitigation. But we can't assume that will happen given the tech challenges and need for investment. In a few places the paper has confusing / misleading language about DACCS allowing delays in mitigation, but elsewhere they make it clear that's not their intent.

Cameron et al. 2017 looks at how much natural habitat can contibute to California's climate goals (~9% of their goals under a moderate scenario). They found the biggest impact from improved forest management to boost C stocks (61% of total potential, from things like longer rotations and higher tree density), followed by reforestation (14%). Some pathways like compost amendments may have undesirable side-effects on biodiversity, and they didn't include other natural climate solutions like changes to agricultural management.

REFERENCES:
Busch J, Engelmann J, Cook-Patton SC, Griscom BW, Kroeger T, Possingham H, Shyamsundar P. 2019. Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change 9: 463–466.

Cameron, D. R., Marvin, D. C., Remucal, J. M., & Passero, M. C. (2017). Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proceedings of the National Academy of Sciences, 201707811. https://doi.org/10.1073/pnas.1707811114

Edwards, D. M., & Meagher, L. R. (2019). A framework to evaluate the impacts of research on policy and practice: A forestry pilot study. Forest Policy and Economics, (August). https://doi.org/10.1016/j.forpol.2019.101975

Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PLOS ONE, 14(5), e0217148. https://doi.org/10.1371/journal.pone.0217148

Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1), 3277. https://doi.org/10.1038/s41467-019-10842-5

Roque, B. M., Salwen, J. K., Kinley, R., & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132–138. https://doi.org/10.1016/j.jclepro.2019.06.193

Smith, P., Adams, J., Beerling, D. J., Beringer, T., Calvin, K. V., Fuss, S., … Keesstra, S. (2019). Impacts of Land-Based Greenhouse Gas Removal Options on Ecosystem Services and the United Nations Sustainable Development Goals. Annual Review of Environment and Resources, 44(1), 1–32. https://doi.org/10.1146/annurev-environ-101718-033129

Walsworth TE, Schindler DE, Colton MA, Webster MS, Palumbi SR, Mumby PJ, Essington TE, Pinsky ML. 2019. Management for network diversity speeds evolutionary adaptation to climate change. Nature Climate Change 9: 632–636. http://dx.doi.org/10.1038/s41558-019-0518-5


Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Tuesday, September 3, 2019

September 2019 science journal article summary

Barmini cocktail flight for Jon's 40th birthday (animated gif)
Greetings,

Scientists often have intended uses for their research in mind. Sometimes it works, sometimes it gets ignored, and other times it's used in unexpected ways (like liquid nitrogen being used to make caipirinha sorbet, above).

This month I finally focused on a single topic: how scientists may be able to improve the impact of their research. I'm also working on revising a paper with recommendations along these lines - let me know if you'd like to see the draft.

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon


RESEARCH IMPACT:
Cairney & Oliver 2018 summarizes 86 publications with recommendations on how scientists may be able to improve their impact (e.g. do high quality research, make it relevant and readable, understand the decision space, build relationships, etc.). They find that the advice is mostly consistent, albeit vague, but they reject that it is either practical or that it will be helpful. They argue that instead the policy theory literature can help more (e.g. highlighting the important of investing in relationships over the long term), and that scientists should also be aware that attempts to increase impact will typically not pay off. They also note that there can be reputational risks in attempting to do so (especially for women and people of color) and that there's inequality in which scientists are in a position to even make the attempt. At the same time, I think they paint a false dichotomy between research that clearly leads to its intended impact, and research that does not. In practice, these steps can likely increase the chance of impact (whether the original intended use or not), and research that ignores all of these recommendations is less likely to be discovered and used.

Pohl et al. 2017 is a cool but unusual science paper. The authors provide clear instructions in 10 steps for researchers to improve their impact (similar to the concepts in Enquist et al. 2017 but aimed at implementation). Table 1 has a great summary of the process - at a high level they recommend matching research questions to knowledge needed to inform action, thinking about who to involve (e.g. stakeholders) throughout the research process, and reflecting on lessons learned. The authors have walked a variety of researchers through these 10 steps in a single day. Steps 5-9 provide helpful tips on how to identify a body of stakeholders, and figure out how to break them down into who to co-produce knowledge with, who to consult with, and who to simply inform. It seems like a great framework to get scientists started, although it's a bit ironic to have scientists think on their own about how to better incorporate input and perspectives from stakeholders.

Jacobs et al. 2005 offers several recommendations for producing science relevant to decision making. They include understanding the decision making context & perspectives of end users of the information produced, building relationships, making the research available and understandable, and providing results that are relevant to potential decisions given constraints (deadlines, resources, scale of action, etc.). They also highlight: the challenges of ensuring equitable outcomes, the importance of 'science integrators & translators' (boundary spanners) to bridge the gap between scientists and others, potential measures of success for collaborations w/ stakeholders, and that all this takes lots of time and is hard to do.

Beier et al. 2017 makes 10 recommendations for actionable science to be co-produced by scientists, decision makers, and others. They include: decision makers should convey their need / problem to scientists (not ask for a product), scientists should understand the decision context before suggesting scientific products, have all partners & stakeholders meet in person, have a small technical advisory group and a steering committee for big complex projects, iteratively discuss assumptions / approaches / etc., decision makers should explain to scientists how they evaluate and manage risk and uncertainty, scientists should honestly convey implications of their research along w/ uncertainty and appropriate use, evaluate the coproduction process itself and share the findings, invest in boundary organizations dedicated to coproduction, and create incentives for academic scientists to engage in coproduction.

Bednarek et al. 2018 defines boundary-spanning (as connecting production and use of knowledge), why it matters, and how to do better at it. They argue that boundary spanner experts (potentially full-time) can improve research impact by serving as honest brokers and facilitating good research design and knowledge co-production. They emphasize that this is about ongoing relationships rather than a 1-way comms 'push.' Table 1 has a list of boundary-spanning orgs, and they give useful details of what boundary-spanners can do. They call for formal boundary-spanning positions, trainings that emphasize the skills needed, and having measures of successful boundary-spanning activities.

Dunn & Laing 2017 interviewed 72 Australian policy makers focused on water managements to ask what aspects of research were most likely to lead to influencing policy outcomes. They didn't prompt them on specific frameworks but summarized open-ended responses. They found the most important aspects were applicability (not only relevant, but solves the right problem w/ the right methods comprehensiveness, timing and accessibility), comprehensiveness (interdisciplinary, applicable to the whole life cycle of a policy process, and including the economic impact of policy), timing (agile enough to meet policy maker deadlines and work fast when opportunity windows open, and willingness to share results early), and accessibility (the audience should be readily able to access and understand the research, meaning it should be short and practical and make clear recommendations). They suggest ACTA as an acronym to capture these four aspects of useful research.

Enquist et al. 2017 is an overview of 'translational ecology' which they define as integrating ecological knowledge with decision making. Similar to calls for transdisciplinary research, the idea is for researchers to work with decision makers and stakeholders throughout the process and focus on real-world outcomes. They lay out 6 key principles (collaboration, engagement, commitment, communication, process, and decision-framing) and give examples of each in Panel 2. Panel 1 has a useful summary of relevant terms / jargon which can be confusing to folks new to this topic.

Wall et al. 2017 is another overview of translational ecology.  They focus heavily on the need for scientists to engage in building relationships and trust with decision makers and other stakeholders.

Ruhl et al. 2019 asked  which kinds of scientific papers are the most relevant to policy (clearly articulating a policy proposal, policy actors, and actions to implement it). They limited it to 220 papers published in Policy Forums in Science magazine in the last five years. The most interesting finding is that paper with the most policy relevance cited the most other papers but were cited the least often, indicating that papers aimed at decision makers may be of less interest to research scientists (Fig 3). See Fig 1 for how different fields rated in policy relevance (e.g. atmospheric & hydrospheric science had the highest rate of medium and high policy relevance, general interest articles had the lowest).

Salafsky et al. 2019 is a guide for conservation practitioners to define, generate, and use evidence. They offer a typology of different kinds of evidence (and different contexts where each may be most appropriate, see Tables 2 and S1), plus a decision tree to help choose how to use evidence in a given context (Figure 2). They close with a call to incorporate thoughtful use of evidence into conservation practice, learning from disciplines like medicine which have been doing so for longer.

REFERENCES:
Bednarek, A. T., Wyborn, C., Cvitanovic, C., Meyer, R., Colvin, R. M., Addison, P. F. E., … Leith, P. (2018). Boundary spanning at the science–policy interface: the practitioners’ perspectives. Sustainability Science, 13(4), 1175–1183. https://doi.org/10.1007/s11625-018-0550-9

Beier, P., Hansen, L. J., Helbrecht, L., & Behar, D. (2017). A How-to Guide for Coproduction of Actionable Science. Conservation Letters, 10(3), 288–296. https://doi.org/10.1111/conl.12300

Cairney, P., & Oliver, K. (2018). How Should Academics Engage in Policymaking to Achieve Impact? Political Studies Review. https://doi.org/10.1177/1478929918807714

Cameron, D. R., Marvin, D. C., Remucal, J. M., & Passero, M. C. (2017). Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proceedings of the National Academy of Sciences, 201707811. https://doi.org/10.1073/pnas.1707811114

Dunn, G., & Laing, M. (2017). Policy-makers perspectives on credibility, relevance and legitimacy (CRELE). Environmental Science and Policy, 76(February), 146–152. https://doi.org/10.1016/j.envsci.2017.07.005

Enquist, C. A., Jackson, S. T., Garfin, G. M., Davis, F. W., Gerber, L. R., Littell, J. A., … Shaw, M. R. (2017). Foundations of translational ecology. Frontiers in Ecology and the Environment, 15(10), 541–550. https://doi.org/10.1002/fee.1733

Jacobs, K., Garfin, G., & Lenart, M. (2005). More than Just Talk: Connecting Science and Decisionmaking. Environment: Science and Policy for Sustainable Development, 47(9), 6–21. https://doi.org/10.3200/ENVT.47.9.6-21

Pohl, C., Krütli, P., & Stauffacher, M. (2017). Ten reflective steps for rendering research societally relevant. GAIA, 26(1), 43–51. https://doi.org/10.14512/gaia.26.1.10

Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1), 3277. https://doi.org/10.1038/s41467-019-10842-5

Roque, B. M., Salwen, J. K., Kinley, R., & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132–138. https://doi.org/10.1016/j.jclepro.2019.06.193

Ruhl, J. B., Posner, S. M., & Ricketts, T. H. (2019). Engaging policy in science writing: Patterns and strategies. PLOS ONE, 14(8), e0220497. https://doi.org/10.1371/journal.pone.0220497

Salafsky, N., Boshoven, J., Burivalova, Z., Dubois, N. S., Gomez, A., Johnson, A., … Wordley, C. F. R. (2019). Defining and using evidence in conservation practice. Conservation Science and Practice, 1(5), e27. https://doi.org/10.1111/csp2.27

Wall, T. U., McNie, E., & Garfin, G. M. (2017). Use-inspired science: making science usable by and useful to decision makers. Frontiers in Ecology and the Environment, 15(10), 551–559. https://doi.org/10.1002/fee.1735


Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Thursday, August 1, 2019

August 2019 science journal article summary


Photo from Mick Garratt

Greetings,

Hot weather and a vacation in the woods have me thinking about climate change and habitat conversion (with articles on deforestation, landscape conservation, biodiversity, and livestock sustainability).

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon

LANDSCAPE CONSERVATION:
Runting et al. 2019 argues that debates about 'land sparing' vs 'land sharing' miss an important point - good forest management is likely more important. They run several scenarios with different degrees of land sharing vs sparing, and conventional vs. improved management (reduced-impact logging, longer plantation rotation, and strictly enforcing protected areas). They saw the best outcomes with improved management and a mix of sparing and sharing (but favoring sparing, see Figure 4). Check out Figure 2 for what an 'optimal' scenario looks like compared to extreme sharing or sparing (but ignore the idea that tiny islands of protected areas or holes in larger ones are ideal - this is almost certainly an artifact). There's a blog on this one at https://nature4climate.org/news/headline-stories/cant-see-the-wood-for-the-trees-making-the-most-of-our-forests-for-biodiversity-and-wood-production/

Kennedy et al. 2019 calculates how modified by human activities land around the world is. While only 5% of land area was 'unmodified', most of the world was 'moderately modified.' The authors argue that ecoregions with moderate modification may be good candidates for high priority conservation action, because they tend to have some relatively intact lands near to highly modified lands (which thus may pose a threat in the near future). In particular, the tropical and subtropical dry broadleaf forests biome (mostly in Mexico, India, Argentina, & SE Asia) was found to be the most threatened (high conversion relative to protection). While they didn't include all threats (e.g. logging, invasive species, climate change, and more) these data can be used to evaluate the suitability of lands for protection. You can explore the findings and maps at http://gdra-tnc.org/current/ and you can download the data from http://s3.amazonaws.com/DevByDesign-Web/Apps/gHM/index.html


CLIMATE CHANGE:
Bastin et al. 2019 estimate 900 million ha of land could be reforested globally (excluding cropland and urban areas), which could store 205 Gt of carbon (752 Gt CO2e). Alternatively, they predict we'll lose 223 million ha of forest by 2050 under business as usual. This paper has been broadly criticized for overstating the role of reforestation in climate mitigation (while reforestation is important, the authors' conclusion that it's the most important solution is a fringe opinion), especially since they call for a focus on boreal plantings which reduces albedo relative to bare snow and ice (thus reducing the climate mitigation contribution). Here's a blog covering the paper including the critique: http://blogs.discovermagazine.com/crux/2019/07/10/reforestation-climate-change-plant-trees/#.XSdzAehJE2w

Diaz et al. 2018 looks at trade-offs between different forest management options for Douglas-fir in the NW US that could improve carbon storage. They compare managing the land to optimize net present value (NPV) to managing for sustained timber yield (with different levels of environmental management, e.g. longer rotations and some aspects of FSC certification). They find that environmental constraints boost carbon storage but hurt net present value. For example, one scenario had 26% more carbon, but 15% less timber and 21% lower NPV. They explore different policy options and challenges related to driving more carbon storage in timberlands.


DEFORESTATION:
Lambin et al. 2018 look at how effective company commitments to end deforestation are. The key finding is that public policy can significantly improve the likelihood of reducing deforestation relative to private action alone. For example, the Soy Moratorium combined sector-wide commitments with monitoring and public disincentives to clear forest in Brazil, with some success. They call for better company commitments (as called for by the Accountability Framework, https://accountability-framework.org/), and recommend public policies including: legal reform & enforcement, land tenure reform, working with people clearing the most forest, broadening scope (companies, commodities, & regions), incentivizing all actors in the supply chain to participate (e.g. fertilizer companies rarely engage in these commitments), improving traceability and transparency, and increasing demand for deforestation-free products.


LIVESTOCK SUSTAINABILITY:
Schader et al. 2015 looks at how shifting what we feed cattle could improve sustainability. The idea is to feed them less food humans could eat (like corn), and more grass and by-products we can't or don't eat (e.g. distiller's grains, bran, oilseed cake, etc.), which also limits the total amount of livestock which can be raised in this way. Figure 1 is a great overview of what this would mean, for example a big reduction in pigs and chicken and only modest increases in other livestock (that can eat grass). But note a cardinal data visualization sin: inconsistent scaling of bar charts (e.g. the soil erosion from water chart makes it look like their preferred scenario has only 42% the erosion of the reference scenario, but it actually has 88% the erosion) which means you have to look carefully. Still, it's an important concept to explore, and a useful contribution to the conversation.

What are the barriers to using livestock practices that reduce GHGs? Kipling et al. 2019 asked Welsh ranchers and other stakeholders in a series of interviews and workshops. They focused on the conceptual framework rather than the practices, splitting them into practical limitations (e.g. costs and infrastructure, see Figure 1), knowledge limitations (being unaware of options and how they work, see Figure 2), and cognitive limitations and interests (complexity and competing values, see Figures 3 & 4). There aren't any big surprises here, but it's a useful overview, especially the quotes from ranchers for each concept they present.


BIODIVERSITY:
Humphreys et al. 2019 looks at recent (since 1900) and historic plant extinction, and compares it to animal extinctions. The most interesting findings are that the IUCN Red List data on extinct plants are pretty poor (with 50 Red List species incorrectly listed as extinct, and 491 extinct species missing from the Red List), that 54% of plants reported extinct were later rediscovered (or reclassified to be the same as an extant species), that thousands of extant plant species are 'functionally extinct' (too few exist to form a viable population going forward), and that 55% of the 571 plant species that have gone extinct have done so since 1900. This is a short paper and worth reading.

REFERENCES:
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., … Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848

Diaz, D. D., Loreno, S., Ettl, G. J., & Davies, B. (2018). Tradeoffs in timber, carbon, and cash flow under alternative management systems for Douglas-Fir in the Pacific Northwest. Forests, 9(8), 1–25. https://doi.org/10.3390/f9080447

Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E., & Vorontsova, M. S. (2019). Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology & Evolution, 3(July). https://doi.org/10.1038/s41559-019-0906-2

Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the Middle: A Shift in Conservation Priorities based on the Global Human Modification Gradient. Global Change Biology, (June 2018), 1–17. https://doi.org/10.1111/gcb.14549

Kipling, R. P., Taft, H. E., Chadwick, D. R., Styles, D., & Moorby, J. (2019). Challenges to implementing greenhouse gas mitigation measures in livestock agriculture: A conceptual framework for policymakers. Environmental Science and Policy, 92(November 2018), 107–115. https://doi.org/10.1016/j.envsci.2018.11.013

Lambin, F., Gibbs, H. K., Heilmayr, R., Carlson, K. M., Fleck, L., Garret, R., … Walker, N. (2017). The role of supply-chain initiatives in reducing deforestation. Nature Climate Change, 8(February), 109–116. https://doi.org/10.1038/s41558-017-0061-1

Runting, R. K., Ruslandi, Griscom, B. W., Struebig, M. J., Satar, M., Meijaard, E., … Venter, O. (2019). Larger gains from improved management over sparing–sharing for tropical forests. Nature Sustainability, 2(1), 53–61. https://doi.org/10.1038/s41893-018-0203-0

Schader, C., Muller, A., El-Hage Scialabba, N., Hecht, J., Isensee, A., Erb, K. H., … Niggli, U. (2015). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society Interface, 12(113). https://doi.org/10.1098/rsif.2015.0891



Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Monday, July 1, 2019

July 2019 science journal article summary

      Above: People floating down the river Rhine, see rivers articles below

Hi,

Here is another grab bag of articles on landscape conservation, research impact, rivers, climate change, and coastal wetlands. If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon

Once again Steve Wood (from The Nature Conservancy) has kindly added a couple of his own guest reviews, which I've broken out below to avoid confusion. Thanks Steve!

LANDSCAPE CONSERVATION:
Burivalova et al. 2019 is a literature review of how effective four strategies were in delivering environmental, social, and economic outcomes. They looked at creating protected areas (PAs), forest certification and reduced impact logging (RIL), payment for ecosystem services, and community forest management. The results are varied and complex but Figure 2 summarizes them very well - no strategies always succeed, but all sometimes succeed (and note the caveat that each square is not equivalent). PAs performed well environmentally (after certification & RIL), but very poorly socially and economically. The authors conclude that there are surprising gaps in the literature on monitoring the efficacy of conservation strategies, and that before implementation local evidence should be examined to minimize the chance of failure or even having a strategy backfire.


RESEARCH IMPACT:
White et al. 2019 surveyed land managers from the U.S. Forest Service about how they received and used scientific information in decision making. One key finding is that they believe science is less useful in making decisions with high public consensus (although even then only 19% of managers thought public priorities should have more weight than science, with 36% wanting equal weight and the remainder giving more weight to science, see Figure 3a). This study also reports low engagement with scientists, but Figure 1 shows that they primarily measured managers actively seeking out scientists rather than the reverse (which could be more common).

Bogenschneider et al. 2019 interviewed legislators in WI and IN about how research contributes to policymaking. While research was only infrequently mentioned as changing or even informing their positions on issues, it was seen serving several purposes (see Table 1), including persuading others, designing good legislation, educating others, improving debate & dialogue, and building trust. However, several quotes imply that they tend to seek out research that backed up their beliefs rather than exploring with an open mind. At the same time, the results highlight the importance of clear scientific conclusions that allow legislators to evaluate the potential impacts of actions they're considering (as opposed to more circuitous findings sometimes favored by scientists).


RIVERS:
Grill et al. 2019 estimates only about a third of the world's longest rivers (<1,000 km) are freely flowing (defined here with a new metric that means neither dammed, nor significantly impacted by water consumption or infrastructure in riparian areas and floodplains). Those long free rivers are mostly in remote parts of the Amazon, Arctic, and Congo. On the other hand, shorter river reaches are doing better: 56% of long rivers (500-1000km) are freely flowing, rising to 80% and 97% for medium (100-500km) and short (10-100km) rivers respectively. However, since they rely on global dam databases, they caution that they likely overestimate freely flowing rivers due to missing data on small dams. The figures (and table 1) have great details on how well connected each river reach is, what limits connectivity most (96% one of the impacts of dams: fragmentation, flow regulation, and sediment trapping), and connectivity broken down by river length.

Cui et al. 2016 estimates how sediment built up behind Matilija dam would be released after dam removal (or partial removal / breach). They conclude that upon removal the main sediment pulse is likely to only last a few hours, and almost certainly < 3 days (with a worst case scenario of 8 days). The authors then argue that halting water diversion (e.g. for agriculture) until the sediment stabilizes should have minimal impact given the short time for sediment to be flushed out.


CLIMATE CHANGE:
Gonzalez 2018 is an unsurprising but interesting reframing of current and projected climate change impacts: national parks are harder hit than the rest of the US (getting warmer and drier). This is largely driven by the fact that 63% of national park area is in Alaska (!), with most of the rest in the Western US (see Figure 2). This shows the need for parks to be actively planning how to respond to climate change, and is a useful reminder that protected areas are not protected from climate change.


COASTAL WETLANDS:
Renzi et al. argues that to successfully restore coastal wetlands, reducing stress & competition isn’t enough. To make restoration more effective at replicating intact habitat we should incorporate ‘positive species interactions’ (where one or both organisms benefits from the other without being harmed, aka ‘symbiosis’ in lay terms but in ecology symbiosis has a broader meaning). Examples include clumps of seagrass helping each other by capturing more nutrients and reducing erosion, or sponges on mangrove roots exchanging nutrients and carbon so both grow faster (See Fig 1 & 2 for more examples). Key recommendations are :to clump (not evenly space) plantings of seagrass or mangroves (in most but not all cases, context is important),  introduce a diverse set of plants and animals (rather than hoping for colonization later), and consider proximity to other wetlands.


Guest reviews from Steve Wood:
CLIMATE CHANGE:

Many environmental groups have focused on using natural ecosystems to drawdown carbon dioxide to achieve climate goals. Baldocchi & Penuelas 2019 walks through the science of how that drawdown works. They cover the mechanistic science of limits to plant fixation of carbon, but in an extremely accessible way. Although they write from a neutral perspective, there are hints of doubt that drawdown could be achieved at scale to have climate-relevant impacts.


SUSTAINABLE AGRICULTURE:
Herbicide residues from widespread chemical weed management can have negative impacts on terrestrial and aquatic ecosystems. Combined with herbicide resistance and lack of innovation of new herbicides has led people from corporations to ecologists to advocate for ecological approaches to weed management. Barberi 2019 gives an overview of ecological weed management approaches, with a lens on sub-Saharan Africa. They focus specifically on practices to: reduce weed seedling emergence; improve crop competitiveness; and reduce weed seedbank size. There is a particular emphasis on Striga management. This is a very thorough literature survey and would be a great entry point to understanding the literature. They do not, however, quantitatively synthesize the literature through tools like formal meta-analysis to put numbers to the impact of practices.

REFERENCES:
Baldocchi, D., & Peñuelas, J. (2019). The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global Change Biology, 25(4), 1191–1197. http://doi.org/10.1111/gcb.14559

Bàrberi, P. (2019). Ecological weed management in Sub-Saharan Africa: Prospects and implications on other agroecosystem services. In Advances in Agronomy (1st ed., Vol. 156). https://doi.org/10.1016/bs.agron.2019.01.009

Bogenschneider, K., Day, E., & Parrott, E. (2019). Revisiting theory on research use: Turning to policymakers for fresh insights. American Psychologist. https://doi.org/10.1037/amp0000460

Burivalova, Z., Allnutt, T., Rademacher, D., Schlemm, A., Wilcove, D. S., & Butler, R. A. (2019). What works in tropical forest conservation, and what does not: Effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conservation Science and Practice, in press(March), 1–15. https://doi.org/10.1111/csp2.28k

Cui, Y., Booth, D. B., Monschke, J., Gentzler, S., Roadifer, J., Greimann, B., & Cluer, B. (2016). Analyses of the erosion of fine sediment deposit for a large dam-removal project: an empirical approach. International Journal of River Basin Management, 15(1), 103–114. https://doi.org/10.1080/15715124.2016.1247362

Gonzalez, P., Wang, F., Notaro, M., Vimont, D. J., & Williams, J. W. (2018). Disproportionate magnitude of climate change in United States national parks. Environmental Research Letters, 13(10), 104001. Retrieved from http://stacks.iop.org/1748-9326/13/i=10/a=104001

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., … Zarfl, C. (2019). Mapping the world’s free-flowing rivers. Nature, 569(7755), 215–221. https://doi.org/10.1038/s41586-019-1111-9

Renzi, J. J., He, Q., & Silliman, B. R. (2019). Harnessing Positive Species Interactions to Enhance Coastal Wetland Restoration. Frontiers in Ecology and Evolution, 7(April), 1–14. https://doi.org/10.3389/fevo.2019.00131

White, E. M., Lindberg, K., Davis, E. J., & Spies, T. A. (2019). Use of Science and Modeling by Practitioners in Landscape-Scale Management Decisions. Journal of Forestry, 117(3), 267–279. https://doi.org/10.1093/jofore/fvz007

Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Monday, June 3, 2019

June 2019 science journal article summary

Butterfly on milkweed

I'm still not doing great with having a coherent theme; this month includes articles on biodiversity, remote sensing, dams, and coastal wetlands. The picture above is the first butterfly I've seen in my butterfly garden this year, eating from the first milkweed flower to open. After reading Sánchez-Bayo & Wyckhuys you may want to plant some too! If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon


BIODIVERSITY:
The U.N.'s Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) released a summary of a major report in May describing global biodiversity loss and extinctions (Diaz et al. 2019). The short version is "nature is in trouble, and so are we as a result." The most reported estimate is that about 1 million species face extinction (many within decades) unless we act to prevent that. I'd recommend looking at the policy summary and at least reading the bold headlines to get a bit more of the key findings. A few others worth highlighting include: declines in crop and livestock diversity is undermining agricultural resilience, drivers of change in nature (e.g. land use, direct exploitation, climate change, pollution, and invasives) are accelerating, goals like the Aichi Biodiversity Target and the 2030 Agenda for Sustainable Development cannot be met without major transformative changes (changes which are possible, albeit challenging), the parts of the world where declining nature is expected to hit people the hardest tend to be poor and/or indigenous communities, international cooperation to build a more sustainable global economy will be key to solve this problem, addressing the sustainability of food will also be important, and land-based climate solutions (e.g. bioenergy plantations and afforestation) have some tradeoffs. Many of these are obvious; the summaries under each headline often include useful detail, but there's too much to summarize at this level. So skim through and dive into the topics that pique your interest.

Sanchez-Bayo & Wyckhuys 2019 looks across 73 studies of insect decline from cross the world, and look at the drivers and other commonalities. A key limit of the paper is that they excluded any study that did NOT show a chance in abundance or diversity, so it's utility is limited to explaining declines where they have happened (see section 4.1). The take-away is that habitat loss seems to be the primary driver (~50% of declines), followed by 'pollution' (~26%, mostly pesticides and fertilizer), then disease and invasive species (18%) and climate change (7%). That means a sole focus on pesticides will miss key drivers of the problem. Figure 3 has a breakdown by taxonomic order, highlighting that dung beetles are in real trouble.


REMOTE SENSING:
Raber and Schill 2019 is a methods paper describing their use of a cheap (<$5k) floating semi-autonomous drone to capture mm-scale 3D imagery of shallow coral reefs. The idea is to be able to track fine scale changes over time in coral more cheaply and accurately than using divers. They note that GPS accuracy was a problem but since the paper was written the authors have added a low cost RTK GPS at the nearest coast to solve that. The paper has lots of detail for anyone interested in trying it.

Pettorelli et al. 2018 is an overview of remote sensing of ecosystem functions (as opposed to the more commonly measured structure and composition). It's a good read, but for most people I'd recommend skipping to table 3 for an overview of existing sensors and data products that can map proxies of ecosystem function, and table 4 for some new and upcoming sensors and products.


DAMS:
Ezcurra et al. 2019 looks at how dams impact sediment transport in tropical estuaries, by comparing two undammed rivers to two dammed ones (see Fig 2 & 3 for a visual summary). They found that the coastal erosion due to dams leads to environmental impacts (fisheries decline, lost coastal protection, GHG emissions from eroded sediment, biodiversity loss) that may exceed the benefits of hydroelectric production on avoided GHG emissions. However, several assumptions in the paper are problematic (e.g. all eroded sediment is lost to the atmosphere as CO2 or methane), and likely pull towards overestimating the impacts. I'd focus more on the coastal changes than the potential implications.


COASTAL WETLANDS / BLUE CARBON:
Rogers et al. 2019 finds that coastal wetlands experiencing relative sea level rise (via either sea level rise or subsiding sea floor, or even sediment compaction and decomposition) sequester and store more soil carbon. They looked at relative levels over the last 6,000 years and how it related to soil carbon at different depths, as well as a site in Australia where there was rapid relative sea level rise in the last few decades. Their explanation is that as sediment accumulates, without relative sea level rise, the space available for vegetation shrinks, and thus organic sediment accumulates more slowly.


REFERENCES:
Ezcurra, E., Barrios, E., Ezcurra, P., Ezcurra, A., Vanderplank, S., Vidal, O., … Aburto-Oropeza, O. (2019). A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers. Science Advances, 5(3), eaau9875. https://doi.org/10.1126/sciadv.aau9875

Díaz, S., Settele, J., Brondízio, E., Ngo, H. T., Guèze, M., Agard, J., … Zayes, C. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services-unedited advance version. Retrieved from https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf

Pettorelli, N., Schulte to Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A. M., … Nicholson, E. (2018). Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2), 71–93. https://doi.org/10.1002/rse2.59

Raber, & Schill. (2019). Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs. Drones, 3(2), 38. https://doi.org/10.3390/drones3020038

Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., … Woodroffe, C. D. (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567(7746), 91–95. https://doi.org/10.1038/s41586-019-0951-7

Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232(January), 8–27. https://doi.org/10.1016/j.biocon.2019.01.020

Friday, May 24, 2019

New book chapter (from CUP) available on agricultural metrics & corporate sustainability

Once upon a time (late 2013 or early 2014) I was asked to co-write a chapter on sustainable agriculture metrics with Peter Kareiva. I learned a lot writing it, and when I realized it would take a while to get published I wrote a blog post about the most surprising thing I learned (that global agricultural land had been decreasing since 1998, not rapidly expanding): https://blog.nature.org/science/2014/06/18/global-agriculture-land-sustainability-deforestation-foodsecurity

That surprise, and the blowback I got after publishing it, inspired me to write another book chapter which came out in late 2017:
http://fish.freeshell.org/publications/DataNotDogma-Chapter11-preformatted.pdf
and a follow-up blog since my writing wasn't clear enough: http://sciencejon.blogspot.com/2018/01/take-2-what-i-wish-id-put-in-my-recent.html

But now, 5+ years later, the actual original book is finally published!

Those interested can read the final chapter at http://fish.freeshell.org/publications/FisherKareiva_CUP_2019_preformatted.pdf

The first half is OK but is out of date and was written when I knew far less about agriculture. I'd skip to the 2nd half (start with the "Can Corporate Sustainability reporting be a force for improved agricultural practices?" section). There's some interesting content I haven't seen anywhere else on corporate sustainabiltiy and food labels.

I haven't read the rest of the book yet but am looking forward to it! You can get the whole book here:  Agricultural Resilience: Perspectives from Ecology and Economics (Cambridge University Press)

Friday, May 3, 2019

May 2019 science journal article summary

Pretty flower

Merry May!

This month's summary is a bit of a grab bag as I settle into my new job and am reading a wide variety of topics.

I'm very happy to report that after about 5 years, a book I contributed a chapter to is finally published! The chapter is "Using environmental metrics to promote sustainability and resilience in agriculture" (co-authored by Peter Kareiva) and it's in "Agricultural Resilience: Perspectives from Ecology and Economics" from Cambridge University Press: https://www.cambridge.org/gb/academic/subjects/life-sciences/ecology-and-conservation/agricultural-resilience-perspectives-ecology-and-economics?format=PB

Unfortunately I wrote it when I knew far less about agriculture (and how to write well), so I can't entirely recommend it (especially all the specific metrics). But it has some useful content. The section "Food labels and sustainability" is still unique as far as I know in providing a concise (2 page) summary of research around food labels and consumer preferences around sustainability (although there are more comprehensive resources, e.g. "The Green Bundle" by Magali Delmas and David Colgan). The corporate sustainability information is badly dated but a decent primer for folks new to the field. Anyway, you can read my chapter here if interested: http://fish.freeshell.org/publications/FisherKareiva_CUP_2019_preformatted.pdf or buy the book from the link above. I haven't seen any of the other chapters yet but hopefully given the long wait they're all fantastic!

Also, normally when I find a paper not as useful as I hoped I don't review it. This month I'm including a couple that I'd normally skip since it may also be useful to see limitations flagged for papers which may be used to overstate a case.

To sign up to receive these summaries, visit http://bit.ly/sciencejon


CLIMATE CHANGE:
Anderson et al. 2019 argues that while investing in natural climate solutions (aka NCS, e.g. trees) is important to mitigate climate change, cuts to emissions from energy and industry are also urgent and imperative. As they put it, it's not "either/or" but "yes, and." Their key point is that while NCS offer many benefits, delaying emissions reductions from energy and industry by even a few years can add up to more than offset the reductions from NCS. They close by calling for conservationists to ensure that NCS mitigation is optimized, while also amplifying the need to work on complementary solutions to reduce anthropogenic emissions at their source.

Dinerstein et al. 2019 is a new spin on an older 'half earth' idea. They outline a "global deal for nature:" an ambitious plan for new protected areas and "other effective area-based conservation measures" (OECMs) which could include indigenous reserves and well-managed grazing areas. By 2030 they seek 30% of earth to be formally protected (currently we're at 15%) plus 20% more as 'climate stabilization areas.' The goal would be to minimize climate change and species extinctions via a companion to the Paris agreement, since preventing habitat loss and maintaining connectivity is much easier and cheaper than restoration after the fact. The paper is useful in identifying key areas for protection and potential policy mechanisms to consider. But Table 3 makes it clear that this is a wish list of several big policies that the environmental movement has been unable to achieve, without a plausible path to galvanize new support and/or come up with creative solutions beyond keeping humans out of most of the planet.

Searchinger et al. 2018 is an attempt to calculate the "carbon opportunity cost" of different ag land uses and habitats. Unfortunately, the assumptions taken together make this paper not very useful. For example, the idea that if food is not produced somewhere it simply will be produced elsewhere with global average values is a big stretch, but it's even more of a stretch to assume that intensifying production in one place will lead to land sparing elsewhere.


WILDLIFE CONNECTIVITY:
Dickson  et al. 2019 is an overview of how electrical "circuit theory" has been incorporated into the science of wildlife connectivity (mostly through an open source tool called circuitscape). Some key advances: recognizing that wildlife don't typically know and use a single optimal path, identifying pinch points that limit flow, and better explaining genetic patterns across a landscape. However, for animals with better knowledge of their landscape (e.g. seasonally migrating ungulates), circuit theory does not perform as well. They close with a quick summary of other applications in groundwater and fire. Check out figure 3 for a great example of how to make a basic bar chart fun and accessible.


SEAGRASSES:
Armitage and Fourqurean 2016 looked at how nutrient availability (both historic and manipulated) impacted seagrass biomass and soil organic carbon (SOC). Sites with a history of lower nutrient availability had lower soil SOC and much lower biomass (both above-ground and below-ground). Adding nutrients boosted above-ground biomass (especially P in nutrient-poor sites, with a smaller effect of N in moderate-nutrient sites), but below-ground biomass didn't respond as consistently. In fact, more sites lost below-ground biomass with extra P than gained it (the abstract misstates the findings). While it would have taken a longer study to accurately detect SOC changes due to biomass inputs, it actually went down with P addition. The authors hypothesize that the extra above-ground biomass from fertilization could trap more sediment and lead to higher SOC, which is plausible, but would have to be tested by a future study (as well as checking for impacts on N2O that could offset the C gains).

Kovacs et al. 2018 mapped seagrass in Australia (in clear shallow waters, ideal conditions) using four satellite sensors with pixel size from 30m to 2m. The results are surprising - overall all sensors had similar overall accuracy for both species ID and % cover. As expected, higher resolution  made it possible to see more detail (Figure 2 is great to compare sensors), but since it wasn't more accurate that would only be relevant if fine-scale distribution patterns were of special interest. Otherwise sticking with the coarser data would save time and money for mapping.


REMOTE SENSING:
Two new lidar satellites were launched recently: ICESat-2 launched in Sep 2018 and GEDI in Dec (initial GEDI data should be released in June, ICESat-2 hasn't announced a date yet). While GEDI is more focused on measuring forest canopy height, ICESat-2 is also mapping vegetation (in addition to ice sheets, clouds, land surface, and more). GEDI will focus on middle latitudes, and ICESat-2 on the poles. Having these data available globally will be a big deal, especially for estimating forest carbon. For more on ICESat-2, Neuenschwander and Pitts 2019 has details on one of the planned data products (ATL08) which maps both ground surface and tree canopies. It's a dense paper, but Figures 4 & 8 are useful to get a sense of the output (they used simulated data), and the discussion has several useful details. The raw data is grouped into 100m cells to have enough photons per cell, but another data product (ATL03) maps each photon individually and can be used to investigate patterns within each 100m cell. Note that tree canopy height is consistently underestimated by ATL08.


SUSTAINABLE AGRICULTURE:
Sun et al. 2018 argues that countries that import crops may also create local pollution problems, contrary to the usual thought that importing food shifts the environmental burden to the exporting country. Their case study shows that as China started importing more soy and growing other crops domestically, their nitrogen overuse increased. However, that doesn't make a strong general case for their assertion, and while China could certainly benefit from more soy rotation, fertilizer overuse there is driven by a series of political and cultural factors that again make it hard to generalize.


REFERENCES:
Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., … Field, C. B. (2019). Natural climate solutions are not enough. Science, 363(6430), 933–934. https://doi.org/10.1126/science.aaw2741  

Armitage, A. R., & Fourqurean, J. W. (2016). Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences, 13(1), 313–321. https://doi.org/10.5194/bg-13-313-2016

Dickson, B. G., Albano, C. M., Anantharaman, R., Beier, P., Fargione, J., Graves, T. A., … Theobald, D. M. (2018). Circuit-theory applications to connectivity science and conservation. Conservation Biology, 33(2), 239–249. https://doi.org/10.1111/cobi.13230

Dinerstein, E., Vynne, C., Sala, E., Joshi, A. R., Fernando, S., Lovejoy, T. E., … Wikramanayake, E. (2019). A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5(4). https://doi.org/10.1126/sciadv.aaw2869

Fisher, J.R.B. and Kareiva, P. 2019. Using environmental metrics to promote sustainability and resilience in agriculture. In Gardner et al. (Eds), Agricultural Resilience: Perspectives from Ecology and Economics. Cambridge University Press

Kovacs, E., Roelfsema, C., Lyons, M., Zhao, S., & Phinn, S. (2018). Seagrass habitat mapping: how do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform? Remote Sensing Letters, 9(7), 686–695. https://doi.org/10.1080/2150704X.2018.1468101

Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221 (April 2018), 247–259. https://doi.org/10.1016/j.rse.2018.11.005

Searchinger, T. D., Wirsenius, S., Beringer, T., & Dumas, P. (2018). Assessing the efficiency of changes in land use for mitigating climate change. Nature, 564(7735), 249–253. https://doi.org/10.1038/s41586-018-0757-z

Sun, J., Mooney, H., Wu, W., Tang, H., Tong, Y., Xu, Z., … Liu, J. (2018). Importing food damages domestic environment: Evidence from global soybean trade. Proceedings of the National Academy of Sciences, 115(21), 5415–5419. https://doi.org/10.1073/pnas.1718153115


Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Monday, April 1, 2019

April 2019 science journal article summary

Tomato seedlings

Happy Spring!

Since I've just changed jobs I asked for help in putting this summary together; Steve Wood from The Nature Conservancy kindly reviewed four of the articles below. Also, these summaries come from me (and Steve in this case) and do not reflect the views of our employers or any other organization. Any mistakes are my own.

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejonFinally, for folks interested in science communications, I've been getting a lot of good ideas from the short daily emails Bob Lalasz (from Science + Story) sends. You can check out a few examples at https://medium.com/science-plus-story and if interested sign up at https://scienceplusstory.com/quick-list-opt-in/

WILDLIFE CORRIDORS:
Tack et al. 2019 identifies priority areas to focus land protection on the most important wildlife corridors used by pronghorn and greater sage grouse in the Northern Great Plains, specifically north-central Montana into southern Saskatchewan. Sage grouse in this area depend on migration, as do about half of the pronghorn population. Private lands in the area are roughly half ranches on native sagebrush, and half cropland (with public land typically primarily used for cattle grazing). Cropland expansion is the main driver of habitat loss (followed by energy development), and protected areas only cover ~5% of pathways for both species. So priorities for protection are on lands used for migration with a higher chance of cultivation. Note Figure 4 which shows the importance of unprotected public, private, and even cultivated land. Fences impede migration, but marking them with flags reduces collisions.

SUSTAINABLE AGRICULTURE:
McGill et al. 2018 modeled greenhouse gases (GHGs) of groundwater-irrigated vs rainfed croplands in the Midwest US. Irrigated fields had higher net GHGs (27 g CO2e/m2/yr) than rainfed (a net sink, -14g CO2e/m2/yr), mainly due to higher N2O emissions and fossil fuel use to pump groundwater. However, since irrigation also increased yield the emissions per unit of crop yield were similar: 0.04 kg CO2e/ kg yield for irrigated vs -0.03 kg CO2e/ kg yield for rainfed (again a GHG sink). Finding the rainfed system to be a net GHGS sink is surprising and unusual, even if you assume that no-till farms have net C sequestration (which is unlikely). There are some other odd findings like fertilization reducing soil C. But the overall idea should be valid: irrigation will generally lead to wetter soil (w/ higher N2O emissions more than offsetting higher soil C) plus energy use to pump water.

Smith et al. 2019 is a review of the environmental impact widespread adoption of the voluntary Bonsucro standard for sugar cane could have. They find impressive potential, especially if efforts are targeted well and involve compliance with all standards and criteria. Half of global environmental potential benefits could be met with only 10% of total production area (check out figure 4 for details). However there are several challenges, including what to do with farms totally unable to meet those standards (e.g. large areas in India). This paper also models impact IF all participating farms actually met all target outcomes, and doesn't look at how companies could drive that or what would be practical with different levels of investment. Nonetheless, this shows a lot of potential especially if we can move beyond practice based frameworks to those that are outcome-based and carefully targeted. You can read a blog about this work here:
https://twin-cities.umn.edu/news-events/research-brief-targeted-sustainability-standards-agriculture-hold-promise-global?fbclid=IwAR27p0_IHCXRrRFogBMtGgBPajMRiZhQoWMR1k8M_0fo_zWiXvQ56Ww481M
Han et al. 2018 is a meta-analysis of 68 studies of how straw incorporation affected carbon sequestration and crop yields across China. On average it sequestered 0.35 t C / ha / yr in the upper 20 cm of soil, and boosted crop yields 13%. It worked best on clay soils, high crop intensities, and in areas where soil is currently being degraded (NE China).



GUEST REVIEWS FROM STEVE WOOD:
Have questions about the four papers below? Contact Steve at stephen.wood@TNC.ORG.

Soil health has become a major are of interest, but there is uncertainty about how to measure and define it. Derner et al. 2018 tackle the question of how to define soil health for grazing lands. This is an important task because the notion of soil health emerged from row-crop agriculture, yet the way grazing lands are managed and the environmental services they provide are starkly different to row crop agriculture.
The authors argue that a soil health approach to grazing lands should re-focus grazing management on managing for ecosystem processes, rather than maximizing short-term profit. And this requires building cross-institutional capacity and training, adaptive management, and long-term monitoring. The authors argue against adoption of a single set of practices or indicators. For instance, a soil health indicator from row crop agriculture is high soil cover, but in grazing systems high amounts of bare ground can be necessary for some grassland bird species. This paper is also noteworthy for the mix of authors--everything from university professor to rancher.

The two papers by Unks et al. 2019 aim to understand the drivers of pastoralist livelihood vulnerability in one of the Northern Rangeland Trust community conservancies. They argue that the rangeland institutions in central Kenya going back to the colonial era have promoted formal land tenure, whether at the individual or community level. But, because forage production is patchy, successful grazing requires a high level of mobility to access resources in different areas at different times. This type of management is at odds with formal property regimes, as well as at odds with realities of modern life, like employment at conservancy lodges and keeping children in school. Herders now face limited mobility, which means that livestock husbandry has shifted towards browsers, like goats and camels, which do better on lands with low grass productivity. Limited mobility also has made livestock husbandry more individualistic, leading to greater inequality among households. Greater inequality leads to unequal ability to cope with future climate change.

The papers offer nuanced insight into the drivers of change and livelihood vulnerability. The narrative promoted by conservation non-profits tends to be more simplistic: poor current management--stocking rates, population growth--is the main driver of poor vegetation and livelihoods. By showing the importance of long-standing institutional, climatic, and socio-economic change, the authors imply that land-tenure-based management plans (like those promoted at NRT) will not fix the ecological or livelihood challenges. In bringing more nuance they highlight greater challenges, but they don’t offer insight into what solutions to those greater challenges might be.

Finally, Rosenzweig et al. 2018 focuses on quantifying whether it is possible to lower fertilizer and herbicide use while maintaining yields via changing crop rotations. The focus is on dryland, no-till wheat in Colorado and Nebraska. They tested three groups of cropping systems, all of which had wheat in the winter. In the summer they differed by: (1) natural fallow one out of two years;  (2) a summer crop (corn, sorghum, millet, peas, or sunflowers) replacing fallow every couple of years; (3) continuous cropping with mixtures of the same crops from (2). They showed that the continuous cropping system had the highest nutrient retention, greater fungal colonization of roots (which increases nutrient retention), lowest herbicide use, lowest yield penalty, and highest profitability. Continuous cultivation had greater net revenue than basic fallow by $100 per hectare per year.

One reason I like this paper is that it challenges the idea that continuous cultivation is inherently bad and that natural fallow/regeneration is good. The paper shows that planning cropping and restoration is likely the key to ecological intensification. One limitation of this study is that because there were multiple crop combinations in each of the categories tested that it’s not possible to discern which of those combinations had the greatest effect.


REFERENCES:
Derner, J. D., Smart, A. J., Toombs, T. P., Larsen, D., McCulley, R. L., Goodwin, J., et al. (2018). Soil Health as a Transformational Change Agent for US Grazing Lands Management. Rangeland Ecology & Management, 71(4), 403–408. http://doi.org/10.1016/j.rama.2018.03.007

Han, X., Xu, C., Dungait, J. A. J., Bol, R., Wang, X., Wu, W., & Meng, F. (2018). Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences, 15(7), 1933–1946. https://doi.org/10.5194/bg-15-1933-2018

McGill, B. M., Hamilton, S. K., Millar, N., & Robertson, G. P. (2018). The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Global Change Biology, 24(12), 5948–5960. https://doi.org/10.1111/gcb.14472

Rosenzweig, S. T., Stromberger, M. E., & Schipanski, M. E. (2018). Intensified dryland crop rotations support greater grain production with fewer inputs. Agriculture, Ecosystems and Environment, 264, 63–72. http://doi.org/10.1016/j.agee.2018.05.017

Smith, W. K., Nelson, E., Johnson, J. A., Polasky, S., Milder, J. C., Gerber, J. S., … Siebert, S. (2019). Voluntary sustainability standards could significantly reduce detrimental impacts of global agriculture. Proceedings of the National Academy of Sciences, 116(6), 2130–2137. https://doi.org/10.1073/pnas.1707812116

Tack, J. D., Jakes, A. F., Jones, P. F., Smith, J. T., Newton, R. E., Martin, B. H., … Naugle, D. E. (2019). Beyond protected areas: private lands and public policy anchor intact pathways for multi-species wildlife migration. Biological Conservation, 234, 18–27. https://doi.org/10.1016/j.biocon.2019.03.017

Unks, R. R., King, E. G., German, L. A., Wachira, N. P., & Nelson, D. R. (2019). Unevenness in scale mismatches: Institutional change, pastoralist livelihoods, and herding ecology in Laikipia, Kenya. Geoforum, 99, 74–87. http://doi.org/10.1016/j.geoforum.2018.12.010

Unks, R. R., King, E. G., Nelson, D. R., Wachira, N. P., & German, L. A. (2019). Constraints, multiple stressors, and stratified adaptation: Pastoralist livelihood vulnerability in a semi-arid wildlife conservation context in Central Kenya. Global Environmental Change, 54, 124–134. http://doi.org/10.1016/j.gloenvcha.2018.11.013


Sincerely,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Friday, March 1, 2019

Transition for monthly science updates


Greetings,

As many of you have heard, this is my last day at The Nature Conservancy; I'll be taking a new job at The Pew Charitable Trusts on their conservation science team. I don't know yet what will happen with these summaries but don't despair! I hope to keep them going in some form - likely with a different topical focus. If you know someone who is feeling lucky and wants to sign up to receive these summaries despite the uncertainty, they can do so at http://bit.ly/sciencejon

I've been frantically wrapping up work so have read less science than usual this month. But I did write a blog post explaining why seemingly silly questions like how to define forests and deforestation are actually both tricky and really important: How many trees make a forest? I talk about The Accountability Framework and the critical role it can play in helping to end deforestation:
https://news.mongabay.com/2019/02/how-many-trees-make-a-forest-commentary/

The only papers I reviewed this month are one about how scientists read scientific literature, and two soil papers (from TNC's Deborah Bossio and Steve Wood) which are both summarized on this blog: https://nature4climate.org/news/headline-stories/time-to-let-soil-shine-a-global-agenda-for-collective-action-on-soil-carbon/

READING SCIENTIFIC LITERATURE:
Colleagues working in applied conservation often tell me they have no time to read scientific literature. Tenopir et al. 2015 is an article about how faculty in five US universities seek out scholarly literature (including but not limited to the sciences)! I'll be honest - I skimmed this looking for two bits of information: scientists reported reading an average of 26 articles per month (Fig 1), and spent 32 minutes on each article (Fig 2). I read fewer articles, and usually read them faster. But even these academics are spending less than two days out of the month on this. Surely most of us can find a few hours! There are some other interesting tidbits here. Almost 2/3 of articles read are from the last two years - so have a good comms plan for your research! Also, NONE of the surveyed scientists read articles on a mobile device like a tablet, which is a huge missed opportunity for those long commutes on mass transit!

SOILS:
Soil organic carbon (SOC) is often claimed to improve crop yields.  Oldfield et al. 2019 tests that claim with a global meta-analysis of maize and wheat. They find higher SOC is associated with higher yields, up to ~2% SOC. They then look at the ~2/3 of global maize and wheat lands below 2% to estimate the opportunity to improve yield by boosting those soils to 2% SOC. Globally they estimate that we could produce ~5% more maize and ~10% more wheat, which represents 32% of the global yield gap for maize (largely in the US), and 60% for wheat (largely in China). Check out Figure 4 for global opportunity maps. Note that there is a lot of variance in the data, and it's even possible yields could decline slightly as SOC increases.

Vermeulen et al. 2019 is a call to action on improving global soil carbon stocks. It reviews some of the challenges that have impeded action at scale,and emerging opportunities that could give soil initiatives a boost. They call out three key needs, and look at possible actions to advance all three. First, a compelling vision for action led by political champions. Second, a stronger business case (including evidence of success for both public and private investors). Finally: a more compelling value proposition for farmers and land managers. They also highlight the need for practical measurement protocols, and several policy gaps. It's a quick read at 3 pages so worth a look.

REFERENCES:
Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL, 5, 13–32. https://doi.org/10.5194/soil-2018-21

Tenopir, C., King, D. W., Christian, L., & Volentine, R. (2015). Scholarly article seeking, reading, and use: A continuing evolution from print to electronic in the sciences and social sciences. Learned Publishing, 28(2), 93–105. https://doi.org/10.1087/20150203

Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., … Warnken, M. (2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1), 2–4. https://doi.org/10.1038/s41893-018-0212-z


Sincerely,

Jon

p.s. as a reminder, you can search all of the science articles written by TNC staff (that we know of) here http://www.conservationgateway.org/ConservationPlanning/ToolsData/sitepages/article-list.aspx
(as you publish please email science_pubs@tnc.org to help keep this resource current). This will be my last plug for this resource since I'm leaving TNC.
If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Tuesday, February 26, 2019

Tips for being a more effective scientist



After 13 years as some form of scientist at The Nature Conservancy (TNC), I’ve learned a lot. Here are a few of my top lessons learned that are easy to miss when you’re focused on your core responsibilities. There are many ways to be a successful applied scientist; please share your own advice in the comments about what you have learned that I left out. Also, I recognize that these all take time and can add work. So don't be afraid to say no to requests to free up time to do things like this that you may not get asked to do! 

1. Always make time to learn
Knowledge is the primary currency of scientists. If you don’t make time for learning, you’re withdrawing on an account that won’t replenish. Dedicating even a small amount of time to learning is essential to staying effective. I spend ~1-2% of my time reading scientific literature: enough to get through several papers each month and summarize them. I also spend a few percent working on diversity & inclusion issues at TNC, which has helped me learn on completely different topics. Hate reading papers? Call trusted colleagues to pick their brains, attend a webinar, or take a training on something you’re bad at. I was terrible at written and spoken communications, as well as conflict management, when I started at TNC. I’ve improved a lot by putting in effort. Don’t have time? Read papers on planes, trains, and buses (I do this on a tablet synced to Box), while eating breakfast, or when you need a break from email and talking to people. Pick a couple of your least productive standing meetings, switch from 60 to 30 minutes (or cancel), and use the time saved for learning.

      2. Don’t be afraid to speak up for science and rigor
Scientists need to advocate for the use of evidence in making decisions. That can at times mean pushing for measures, providing internal critique and suggestions to statements by colleagues who aren’t as current with the science, and in general helping to ensure your organization is well aligned with good science. That can be uncomfortable, and many of us are reluctant to speak up. But I find that most of the time, when I raise concerns thoughtfully and back them up with science, people I work with have appreciated it (even when I disagree with them). I’ve even had senior managers complain to me that people are too reluctant to push back on them sometimes!

      3. Step up to solve problems when you can
You likely sometimes run into a problem that you know has a relatively simple fix but which is not your job. Consider stepping up to fix it anyway. There have been several times when I’ve been annoyed by (and affected by) a problem and realized that I could make a big dent in it with just a few days of work. People see this as leadership, and it pays off. Examples could include working with a colleague in IT to rapidly put together a simple information system or web page; helping to organize or connect scientists on a topic who are currently not talking to each other; engaging with Employee Resource Groups on projects to improve diversity, equity or inclusion; or doing whatever else inspires you. Always thank the people who go out of their way to help you on these projects – a little recognition and appreciation goes a long way.

      4. Network (internally and externally)
At a big NGO like TNC, there are guaranteed to be several staff who can help you learn and grow in your job (as well as be fun to work with). But, especially for field scientists, it can be hard to connect with others. Find out who works on your topic in other programs, and build a network of people you can ask to collaborate on papers, review your work, help brainstorm, etc. You can do it via Connect or Workplace, or via email and phone. 

This applies outside of your organization too, especially if you’re at a smaller one. Mentoring students at universities (e.g. via NatureNet) is one great way to do this – you build connections with both the student and their academic mentor. I’ve also found that authors of scientific papers are almost always thrilled to be contacted with questions or feedback. I also have a policy of making time (15-30 minutes) for anyone who wants to connect with me; you never know how you can help them and vice versa. That includes folks in non-scientific roles (e.g. admin or operations) – they play a critical role in getting things done and are sometimes brushed off by busy scientists when they have questions. It also means being an ally for people who need it. Finally, look for ways to get to know decision-makers! Sometimes I’ve been invited to a non-scientific event to represent TNC, gone resentfully, and walked away with invaluable contacts I didn’t expect.

      5. Learn your biases and reflect on them often
We all have bias and a perspective that informs how we do science. Many of us have strong opinions backed up by considerable reading and thought, so it can be hard to acknowledge that we almost always have bias, and that there’s a lot we don’t know. Pretending you can 'cure' bias means you'll likely be blind to it - focus on understanding it and mitigating it instead. 

I try very hard to follow advice from Ray Bradbury, which is that whenever I notice myself having an emotional reaction to something I’m reading, I pause and think about why I’m reacting. For example, if I’m reading a paper that contradicts what I think I know, I work extra hard to ask “How could this be right? What assumptions am I making? How could I reconcile conflicts between this information and other information I have?” Sometimes careful science lands you in the same place as your gut. But take the time to be sure, and disclose your leanings to colleagues so they can help to bring other perspectives that balance yours. 

Talk to people in other scientific camps, and listen to them in order to gather data, understand, and reflect (not to win an argument). Seek collaborators who disagree with you. This also includes listening to non-scientists who push back on recommendations by scientists about how much time and data we need to answer a challenging question! Most scientists prefer to answer questions with “it depends,” and sometimes we need to be pushed to provide actionable information or risk missing a chance to impact a decision.

      6. Pay attention to your colleagues’ style
While it’s obvious, the fact that others think and feel very differently from you is surprisingly non-intuitive to me. I remember working with a colleague years ago who was consistently making mistakes on a process, and I added more and more detail to the guidance to try and fix it. But for him (and many others), as guidance gets longer, they read less of it. I had to understand his style and adjust accordingly. Similarly, I like to resolve issues through rapid back and forth discussion, but others don’t think that way, and instead need materials in advance and then time to think before responding. The “interaction styles” training is very helpful for this, as is the Enneagram. Learning the styles of some key colleagues who I don’t intuitively understand has been critical for me to build relationships and work effectively. 

One final note - I found the photo in this post hilarious and used it for years at work (it was taken mid-dance at my wedding). But I learned that a couple of colleagues took it as a lack of seriousness or credibility, and once I learned it undermined my work with some people, I changed it. So pay attention to how some of your non-work choices impact your work, and reflect on when to bend (e.g. pick a more professional photo or username), and when to stick to your guns (I still haven't cut my hair).