Showing posts with label beef. Show all posts
Showing posts with label beef. Show all posts

Monday, February 3, 2025

February 2025 science summary

Wetlands institute marsh

 Good day,


I have a mixture of papers as usual this week, covering using AI to do lit review (on natural climate solutions), more on seaweed to reduce cattle emissions, one on fire management, and one bad study on return-to-office mandates.

Also, I have no idea how the cost and complexity of this new AI monitoring tool (SPARROW, https://blogs.microsoft.com/on-the-issues/2024/12/18/announcing-sparrow-a-breakthrough-ai-tool-to-measure-and-protect-earths-biodiversity-in-the-most-remote-places/) compares to simpler camera trap setups but I’m especially curious if the acoustic component might be able to detect amphibians or birds unlikely to be visible in a camera trap (thanks to Tara Schnaible for passing this on). If any of you are using camera traps and/or microphones for biomonitoring I'd love to hear your thoughts!

If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).


CLIMATE CHANGE AND AI METHODS:
Chang et al., 2024 uses specialized large language models to assess evidence for 11 co-impacts (positive or negative) of natural climate solutions (NCS). They extracted data from 257,266 studies (after screening 2.3 million)! Most (87%) focused on management, ~30% covered protection and/or restoration, but <2% mentioned cost or equity or Indigenous peoples or local communities. Fig 2 has a nice breakdown of NCS pathways, biome, co-impacts, etc., and Fig 4b maps countries by both evidence and mitigation potential. Paraguay and Republic of the Congo pop as highest carbon w/ lowest evidence (needing research), while the Americas and E/SE Asia have high evidence and high carbon (needing implementation). Fig 3 shows the volume of evidence for how 22 NCS pathways intersect with the 11 co-impacts (9 of which relate to human well-being). They argue that West and Central Africa deserves special research attention as evidence and human development index are relatively low while NCS potential and threatened species are high. One key caveat: evidence volume does not mean evidence quality. For example, there are many papers on sowing legumes in pasture to reduce enteric methane, but I'm not aware of any that are both accurate and precise enough for implementation (since putting them in the wrong places would lead to increased emissions). But this is still a great example of using AI to review a much larger body of evidence than would be possible manually.


CATTLE AND CLIMATE CHANGE:
Meo-Filho et al. 2024 is an important study (part of a special issue of papers around the sustainability of animal foods and plant alternatives, https://www.pnas.org/topic/561). There's been lots of research with hyperbolic claims about red algae reducing methane production in cattle (mostly in vitro, or tests in a petri dish). I believe this is the first paper to measure methane reductions not only 1) in vivo (a test of what happens in real animals) but 2) in the grazing phase of their life cycle. Most American cattle graze for very roughly 15 months before spending 3 months in a feedlot, and they emit more methane per day when grazing. Only 15% of total cattle production GHGs come from the feedlot phase, so even big reductions then can't touch cattle's high carbon footprint. But this paper found supplementing with the seaweed reduced GHGs relative to control animals by 38% over 90 days with no side effects! That is great news and this is work worth following up, BUT a few key caveats: 1) this was a study of only 24 animals, 2) the animals began at 15 months when they would typically go to a feedlot, to show how much this could really reduce the total carbon footprint of cattle (and if any side effects crop up eventually) it would need to be tested on calves from when they are weaned off of milk to when they go to slaughter, and 3) variations in cattle breed, the dominant type of grass they're eating, and climate could all affect the results. So it's very good news, but does not yet mean it's possible to produce a burger w/ 1/3 less carbon. Also, while the numbers are hotly contested, remember that the carbon footprint of beef is very roughly 10* that of pork or chicken (~50* the GHG of beans), so even if the reduction IS scalable, beef will still be a high carbon food.

Cowley et al. 2024 is a paper with very exiting results about reducing the carbon footprint of beef. They fed Australian Angus cows in a feedlot red seaweed (Asparagopsis) infused into vegetable oil, and added it to their diet at three concentrations of CHBr3 from the sewaweed, plus a control w/ no seaweed (5 cows for each of the four treatments). The medium and high doses reduced enteric methane (CH4) by 98% and 99%, with no significant reported side effects. Other studies have seen less impressive reductions in live cattle (e.g. George et al. 2024 found ~50% reduction), although in petri dishes 99% reductions have been achieved before. The discussion covers potential factors influencing the CH4 reduction, including dose, how much of the feedlot diet is grain vs grass, and cattle breed. Caveat - one high dose cow (20% of the sample) got acidosis and had to be removed, all groups had some health problems, and the medium and high doses did increase neutrophil and platelet count. Overall - at medium and high doses the methane was almost eliminated without affecting meat taste or safety, and without clear cattle health impacts. So the study is very promising, but needs to be replicated with larger groups and different contexts (including eventually a study using Asparagopsis during both the entire grazing phase and feedlot phase).


FIRE MANAGEMENT:
Lacey et al. 2024 highlights opportunities for prescribed fire and/or thinning (removing trees and/or brush) to proactively reduce risk for vulnerable communities and areas of high ecological value. Socially vulnerable communities are less likely to get this preventive fire management, but the authors find there are "win-win" opportunities for places high in: ecological value (specifically biodiversity, connectivity, and climate resilience), ecosystem services (carbon and drinking water), social vulnerability (see Table 1 for indicators), and the potential for wildfire mitigation to be effective (the last is based on fire hazard and vegetative cover). Fig 2c has their top priority areas, including big chunks in the Appalachians, Ozarks, and Rocky Mountains (esp. CO and ID), and Fig 4 shows in yellow where those overlap with the USFS top 10 firesheds. Fig 3 shows how much better their priority areas perform against several indicators than a focus solely in fire mitigation potential; as you'd expect optimizing for social vulnerability, ecosystem services, and ecological value results in sites that score a lot better on those indicators! That may seem obvious, but to reframe: in conservation we OFTEN don't include certain objectives in our planning but still expect to have great stories about all the co-benefits we got anyway. This paper is a great pitch for the value of inclusion; planning for what you care about up front will help you focus work on the places where you can have the most impact.


RETURN TO OFFICE MANDATES:
I already put this on LinkedIn but also wanted to flag here that I thought the recent Ding & Ma 2024 study from University of Pittsburgh (which has had a lot of media attention w/o scrutiny) was misleading. They found that 1) return to office mandates don't improve employee or company performance and 2) these mandates are used more to blame employees and "grab power" than to try and improve performance. This doesn't appear to be peer-reviewed research, which makes me more skeptical by default (it could still be right, but there's no screen for bad methods or misleading results). The paper's tone and methods make it look like they set out to prove some preconceived notions rather than exploring what's going on with an open mind, and the way they assert attribution and causation to some findings they report appear unsupported by the data. Their interpretations of their data are plausible, but even if you trust the data there are other valid interpretations which are also plausible. 

The reason I posted this despite it seeming like a "bad" study is to flag the role of bias in reading science. I believe that if I was required to go to the office more often, it would negatively impact my performance and happiness. I can point to personal experience backing that up (I'm more willing to work longer hours when I don't have a commute or when I'm getting hungry but don't have food nearby to keep working). But in situations like this where I have an opinion and feel inclined to "right on!" what I read, that's exactly when I need to slow down and read carefully since I know I have bias leading me to accept certain results and interpretations as convincing. Also - read a news article about science and wondering if it's misleading? I generally first look for the press release from the host institution (to read a summary that the authors would have had a chance to review to reduce accidental misunderstanding, although they are still unreliable whether on accident or on purpose to hype it: https://business.pitt.edu/return-to-office-mandates-dont-improve-employee-or-company-performance/ ), then read the actual paper.

Don't assume the press release, or even my summary is accurate! Always check before you share or act on a research summary.


REFERENCES:
Chang, C. H., Erbaugh, J. T., Fajardo, P., Lu, L., Molnár, I., Papp, D., Robinson, B. E., Austin, K. G., Castro, M., Cheng, S. H., Cook-Patton, S., Ellis, P. W., Garg, T., Hochard, J. P., Kroeger, T., McDonald, R. I., Poor, E. E., Smart, L. S., Tilman, A. R., … Masuda, Y. J. (2024). Global evidence of human well-being and biodiversity impacts of natural climate solutions. Nature Sustainability. https://doi.org/10.1038/s41893-024-01454-z

Cowley, F. C., Kinley, R. D., Mackenzie, S. L., Fortes, M. R. S., Palmieri, C., Simanungkalit, G., Almeida, A. K., & Roque, B. M. (2024). Bioactive metabolites of Asparagopsis stabilized in canola oil completely suppress methane emissions in beef cattle fed a feedlot diet. Journal of Animal Science, 102(April). https://doi.org/10.1093/jas/skae109

Ding, Y., & Ma, M. (Shuai). (2024). Return-to-Office Mandates. In S&P Global Market Intelligence. https://doi.org/10.2139/ssrn.4675401

Lacey, L. M., Suraci, J. P., Littlefield, C. E., Busse, B. S., & Dickson, B. G. (2024). Informing proactive wildfire management that benefits vulnerable communities and ecological values. People and Nature, August, 1–15. https://doi.org/10.1002/pan3.10733

Meo-Filho, P., Ramirez-Agudelo, J. F., & Kebreab, E. (2024). Mitigating methane emissions in grazing beef cattle with a seaweed-based feed additive: Implications for climate-smart agriculture. Proceedings of the National Academy of Sciences, 121(50), 2–9. https://doi.org/10.1073/pnas.2410863121


Sincerely,
 
Jon
 
p.s. the photo is of a salt marsh at The Wetlands Institute in Stone Harbor, NJ

Tuesday, October 1, 2024

October 2024 science summary

Sylvester the hairless cat

Greetings,

My knee is still healing and as I write this I have COVID. So: I am again behind on proper science reading. BUT I have some fun AI content anyway plus one flashy new paper.

AI TO GENERATE PODCASTS?!
Many of you requested updates on important AI features and this month is a biggie. Google's Gemini Notebook (https://notebooklm.google/) which among other more established features turns a body of text into an NPR-style podcast (a blog about the feature is here: https://blog.google/technology/ai/notebooklm-audio-overviews/). 
 
I would share a direct link to the audio it produces to avoid the energy use of you all trying it on your own, but my employer's AI guidance doesn't let me do that, so I'll just say: watch a little less streaming video this week to reduce your carbon footprint, and give this a go. Just 1) upload a document to https://notebooklm.google, and 2) click Generate in "Deep dive conversation". Wow. The results are conversational, natural, and interesting, with relatively few hiccups / artifacts that I noticed (although not none), although it does consistently hype up each paper (both the magnitude and significance of results are exaggerated, albeit not quantitatively). I could see this being useful to help you digest that report you can't bring yourself to read while jogging instead. Not that you should ever trust an AI summary at this point to be accurate (please don't!) - but for legit reports it appears to be much better than not reading the report at all from my limited testing.

Here are the results of four quick tests: 

1. A colleague fed in a research report which was written for a lay audience already (https://www.pewresearch.org/data-labs/2024/05/23/electric-vehicle-charging-infrastructure-in-the-u-s/), and I was gobsmacked by the quality. Not as good as a legit pro quality podcast, but MUCH better than something I would put out and a hell of a good first draft.
2. What about a peer-reviewed science article which is much more technical and hard to read? I uploaded my 2nd favorite paper that I'm first author on (since my favorite is written in plain English already) which is about how spatial resolution impacts accuracy, cost and making the right decision: http://onlinelibrary.wiley.com/doi/10.1002/rse2.61/full Once again it did really surprisingly well. There was one weird audio screwup, and they focused a moderate amount on an unimportant finding but also had a line I loved: “sharper images leading to sharper insights” (meaning higher spatial resolution of satellite imagery is more accurate and makes for better decisions). Damn that's good!
3. OK, but what about a paper even a proper scientist would have a hard time slogging through? I literally searched all the notes I have written in my reference library notes for the phrase "hard to read" and found this doozy looking at how cow genetics affects methane emissions: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005846 The writing is very technical BUT at least for a reader like me you can skim and sift out some high level conclusions so I was curious to see how it would perform. The answer is still quite well with one big caveat! The use of sire progeny groups was charmingly described as "like a bovine family reunion, but for science" and they had some great metaphors like how a microbe has a "key" to unlock the "lock" of some important sugar molecules. BUT they described the results as finding a MASSIVE and INSANE impact of genetics on methane and how it was a TOTAL GAME CHANGER. In fact, while the authors never clearly state this (though it's obvious in Fig 1), genetic impacts are MUCH smaller than the impact of diet (grass / forage vs. concentrated feed). So like a cow's stomach, this tool will regurgitate back what you put in w/o any filtering or warning.
4. What if you upload a blatantly false document? You guessed it - the tool performs the same way and makes it seem engaging and interesting. A colleague uploaded an Onion article and the tool did NOT waver or flag any parody or provide any warning, it just made it sound like real news. This one is pretty scary.

Note that there were literally no other prompts or edits to produce this, just upload a PDF and click "generate" which I find staggering. I would have believed that these were real podcasts w/ real people, and it definitely took the core content and made it interesting and engaging (albeit over-hyped). Hearing three of these in a row, there is some noticeable repetition in key phrases and style which will make my spidey-sense tingle if I hear similar podcasts out in the wild not attributed to Gemini Notebook.

As the always wise Bob Lalasz from Science+Story noted - this tool cannot (yet) simulate specific voices like a researcher or celebrity, and the output will quickly saturate and land as inauthentic. But at this moment it's both a tool that can provide some useful and engaging summaries, AND could be a way to make misinformation seem more appealing, as the Onion example shows.

Enough AI, here's a review of one actual paper I read w/o AI helping:

CATTLE AND CLIMATE CHANGE:
OK, for years people have been hyping the potential of a kind of seaweed (Asparagopsis) to reduce methane emissions in cattle. But the in vitro evidence was mixed - with potential toxicity and downsides a concern if the dose wasn't just right. George et al is a live trial with good news! They found methane emissions from cattle given an Asparagopsis additive were cut roughly in half compared to control, with 6.6% higher weight gain per unit of feed and no substantial impacts on quality or health (fat color maybe a bit better, tenderness maybe a bit worse). The methane reduction peaked at day 21 and declined afterwards, but since most cattle are in feedlots only ~3 months (ranging from 1.5-4) the decline after day 100 is pretty moot. That's a lot of potential! The only potential downsides were ~50% higher bromine residues in kidney and muscle (I couldn't quickly find guidance on safe levels). Caveats: 1) there were no conflicts declared but the authors appear to almost all work as feedlot consultants and it's single rather than double-blinded, 2) in the US the feedlot phase is only about 15% of the lifecycle emissions of a cow (and of that, some is from growing crops and nitrous oxide) so TOTAL impact on CO2e / kg beef is not as dramatic. Overall my take is 1) this should absolutely be tested and replicated more - anything that reduces the very high carbon of beef is worth pursuing. BUT 2) if this is marketed as "green beef" or license to avoid reductions, it could be net harmful for the climate. and 3) IF spraying this solution on grass worked similarly and didn't inhibit development of calves, the impact could be much higher (since ~80%ish of a cow's life is grazing prior to feedlot, and methane emissions are higher on grass than feed). So let's test that too. There's a blog about this at https://www.theguardian.com/australia-news/article/2024/aug/18/feeding-seaweed-supplement-to-cattle-halved-methane-emissions-in-australian-feedlot-study-finds

As always, if you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon (no need to email me).


REFERENCES:

Fisher, J. R. B., Acosta, E. A., Dennedy-Frank, P. J., Kroeger, T., & Boucher, T. M. (2018). Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation, 4(2), 137–149. https://doi.org/10.1002/rse2.61

George, M. M., Platts, S. V., Berry, B. A., Miller, M. F., Carlock, A. M., Horton, T. M., & George, M. H. (2024). Effect of SeaFeed, a canola oil infused with Asparagopsis armata , on methane emissions, animal health, performance, and carcass characteristics of Angus feedlot cattle. Translational Animal Science, 8(August). https://doi.org/10.1093/tas/txae116

Roehe, R., Dewhurst, R. J., Duthie, C.-A., Rooke, J. A., McKain, N., Ross, D. W., Hyslop, J. J., Waterhouse, A., Freeman, T. C., Watson, M., & Wallace, R. J. (2016). Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLOS Genetics, 12(2), e1005846. https://doi.org/10.1371/journal.pgen.1005846

Sincerely,
 
Jon
 
p.s. This hairless cat named Sylvester lives near me, is extremely friendly, and is as weird to touch as you might guess

Thursday, December 1, 2022

December 2022 science summary

Victoria sunrise

Happy December,


In the spirit of the paper on gratitude below: thank you all for helping me to be a better scientist and a better person. Almost every month I get a note or two from someone who found the summary useful, or who had a question / critique / idea that I learned from. That engagement has helped me push myself to keep doing these, which in terms helps me be a bit more well-read. So thank you!

Also, while they're too long to summarize briefly like I do with papers, I want to recommend the books "Think Again" by Adam Grant and "Noise" by Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein. Taken together, they've given me a lot of ideas about how to get better at reevaluating my beliefs, improving how I review evidence and draw conclusions, and generate estimates. Email me if you want some notes I took on my favorite parts of each!


GRATITUDE:
As a follow-up to the Thanksgiving holiday, I wanted to share a review of a paper on gratitude by Wood et al. 2010. It's a broad review of research on the topic and fairly wonky, but I found a few things useful. I liked how table 1 lists complementary aspects of gratitude: noticing how grateful you are overall, feeling gratitude towards others, focusing on what you have (vs. what you lack), feelings of awe, expressing gratitude (internally and to others), being present, living to the fullest b/c of awareness that life is short, and feeling lucky when thinking about how things could be worse. They cover quite a lot of research on gratitude and how being more grateful is associated w/ better quality of life (although there's some question how much gratitude causes well-being vs. is just correlated). The biggest boost to feeling good came from writing a letter thanking someone and reading it to them in person, but keeping a daily diary of three things you're grateful for seems to be easier to keep up and helps you feel better for longer.


CLIMATE CHANGE
Reich et al. 2022 is an interesting experiment of how boreal forests might respond to 1.6C or 3.1C warming, using open-air heaters in an actual forest (as well as simulating reduced rainfall by covering some of the soil) to see how they respond. Conifers experienced slower growth (Fig 2) and higher mortality (Fig 1). How much varied by species, with balsam fir showing the worst impact. Compared to current conditions, warming or limited rain each reduced balsam fir growth by ~1/3, while the combination reduced growth by ~2/3. Seedling survival went down by ~40% at 1.6C, ~72% at 3.1C, and ~84% at 3.1C plus less rain. But others like jack pine had much smaller effects, and some trees like maples had similar survival rates and more growth under warming (even with less rain). So they predict that conifers will become less dominant, over the long term being replaced by deciduous trees but in the short term more likely replaced by invasive woody shrubs (since the deciduous trees aren't common enough to spread fast). There is an article about this written for general audiences at https://phys.org/news/2022-08-modest-climate-northernmost-forests.html


SUSTAINABLE RANCHING:
Santos et al. 2017 is an interesting paper on using fuzzy logic to assess beef sustainability in the Pantanal. As background - fuzzy logic doesn't mean 'sloppy reasoning' - it's actually a real thing which more or less centers on non-binary logic models. For example, old thermostats are non-fuzzy (they turn on when cold and turn off when warm enough), but newer ones are often fuzzy (adjusting fan speed, turning auxiliary heat on or off, etc. depending on performance). In this case, they take a ton of practical indicators, map each onto a 4 point scale, and combine them into a single "overall sustainability index" (see Figure 1). Check out Appendix I for the list of how well each indicator matched expert judgments.


OTTERS:
Valladares et al. 2022 used drones to figure out what kind of habitat giant otters in Peru most preferred. They found giant otters preferred oxbow lakes with the largest water surface area, the least floating vegetation (more open water), and more dense forest canopy cover along the banks of the lakes.



REFERENCES:
Reich, P. B., Bermudez, R., Montgomery, R. A., Rich, R. L., Rice, K. E., Hobbie, S. E., & Stefanski, A. (2022). Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923), 540–545. https://doi.org/10.1038/s41586-022-05076-3

Santos, S. A., de Lima, H. P., Massruhá, S. M. F. S., de Abreu, U. G. P., Tomás, W. M., Salis, S. M., Cardoso, E. L., de Oliveira, M. D., Soares, M. T. S., dos Santos, A., de Oliveira, L. O. F., Calheiros, D. F., Crispim, S. M. A., Soriano, B. M. A., Amâncio, C. O. G., Nunes, A. P., & Pellegrin, L. A. (2017). A fuzzy logic-based tool to assess beef cattle ranching sustainability in complex environmental systems. Journal of Environmental Management, 198, 95–106. https://doi.org/10.1016/j.jenvman.2017.04.076

Valladares, N. A., Pardo, A. A., Chiaverini, L., Groenendijk, J., Harrington, L. A., Macdonald, D. W., Swaisgood, R. R., & Barocas, A. (2022). High‐resolution drone imagery reveals drivers of fine‐scale giant otter habitat selection in the land‐water interface. Conservation Science and Practice, December 2021, 1–14. https://doi.org/10.1111/csp2.12786

Wood, A. M., Froh, J. J., & Geraghty, A. W. A. (2010). Gratitude and well-being: A review and theoretical integration. Clinical Psychology Review, 30(7), 890–905. https://doi.org/10.1016/j.cpr.2010.03.005


Sincerely,
 
Jon

Wednesday, April 1, 2020

April 2020 Science Journal Article Summary

Cherry tree in bloom
Wow,

I'm guessing that most of you are reading more science while stuck at home, but that you're focusing on science related to the pandemic. I certainly am.

But for now, I figured I'd send the usual kind of summary (focused on protected areas this month), since this is where my expertise lies. I thought of reviewing some articles on how conservation can both help and hurt infectious disease transmission (depending on context), but that felt crass.

If you have thoughts on these summaries (if they should pause, change, etc. during the pandemic) please let me know. If you know someone who wants to sign up to receive these summaries, they can do so at http://bit.ly/sciencejon

PROTECTED AREAS:
Hannah et al. 2020 estimates that effectively conserving 30% of tropical land could cut predicted species extinction by ~1/2-2/3 (if the conserved areas are both cited ideally and managed well: this is not about legal protection alone). Conserving 50% could reduce extinction by more like 2/3-80% (see Table 1 for details including how this varies by region). This is useful to understand how effective conservation can be at different scales. But it's important to note that citing PAs in ideal locations continues to be elusive, this model relies on fairly simple assumptions using species-area curves, and the fact that the results didn't vary much with climate change (RCP2.6 vs RCP 8.5) is concerning. Nonetheless, this could be motivating to highlight the importance of protecting and managing enough of the right places on earth to slow species extinction.

How well does the current network of protected areas represent both biodiversity and the provision of ecosystem services in the tropics? Neugarten et al. 2020 has answers for five countries (Cambodia, Guyana, Liberia, Madagascar, and Suriname). They found that PAs are doing pretty well on biodiversity, forest protection, and forest carbon stocks, although with lots of room for improvement (Table 3). But PAs are not doing well on protecting non-timber forest products (like food and medicine) nor freshwater ecosystem services, both of which are mostly protected at about the same rate as land overall in each country (except Cambodia which did somewhat better on freshwater ecosystem services). Identifying opportunities to improve like this is critical to inform where to cite future PAs. They are up front about a few caveats: they looked only at designation of formal protected areas (rather than effective management on the ground), this may not be reflective of PAs across the tropics more broadly, and they had to rely on some squishy data (e.g. a mix of data sources and expert input to identify biodiversity priority areas). But it's still a good step to inform citing the next wave of PAs as interest in doing so ramps up across the globe. The authors have shared their data here: https://www.conservation.org/projects/mapping-natural-capital/mnc-data/ and are happy to help others to access and use it.

Wilhere 2008 makes an important point about analyses of how much conservation "is enough." He argues there's no single answer, since it depends on society's values for things like what risk of extinction is acceptable. Another key point is that the inputs into these models (which spp. or habitats to model and prioritize) are inherently value-driven as well. He recommends that these kinds of analyses: are transparent about the role of ethics / values (outside of science) in choosing conservation targets, recognize that any modeled policy options are only one of many possible choices, consider alternative targets to prioritize, and work with economists to produce cost estimates of any recommendations.

Wilhere et al. 2012 is a critique of one of the many 'half earth' papers arguing we need to effectively conserve at least half of the earth to avoid unacceptable biodiversity loss (Noss et al. 2012). The critique is similar to the Wilhere 2008 paper: the half earth target is presented as a "strict scientific point of view" without recognizing the value judgments that inform the results. They call for papers like Noss' to clearly articular the values of the author, and evaluate multiple policy options reflecting different values.

Finally, Armsworth et al. 2020 looks at  the best "bargains" exist for conservation: where the most species can be protected (from projected land conversion) for the lowest cost of land acquisition. In other words, how can we prevent the most species loss with a fixed budget for protection?
The new spatial prioritization model this is based on goes beyond binary models (which recommend protection or not), and instead allocates funding as a continuous variable. It also considers complementarity to avoid concentrating funding in areas rich with the same species. When they run the model for the coterminous U.S., attempting to conserve all species equally leads to the Southwest being a priority (since there's lots of cheap, intact habitat). But focusing on vertebrates vulnerable to extinction, priorities pop out in Texas (due to cave ecosystems with many unique & threatened species in small places) and the Southern Appalachians. There's a great discussion of how different assumptions and data inputs impact the results. There's a blog about this article here: http://www.nimbios.org/press/FS_conservetool

WATER USE:
Richter et al. 2020 has two key points about water scarcity (and the resulting impact on freshwater ecosystems) in the Western United States. First, cattle feed is the biggest driver - 1/3 of water consumed in 17 Western states is for cattle feed, and in the Colorado River basin it's 55% (Table 1). But in good news, there is a proven affordable solution - paying farmers to temporarily fallow (stop growing crops) some or all of their land used for cattle feed. We also would need to reduce some of the water transferred between basins to fully address the over-allocation of water. The paper also has good data on which cities are driving the most scarcity via demand for beef, impact of water scarcity on fish (including extinction risk), and the cost of payments to farmers for fallowing ($82-241 million / year). Finally, one of the authors (Arjen Hoekstra) passed away last year, and I wanted to express how much I appreciate his pioneering work on water footprinting, and how much influence he had on me as a scientist. He will be sorely missed.

MARINE ECOLOGY:
Hammerschlag et al. 2019 is a great overview of the many ecological functions and ecosystem services provided by aquatic predators (both marine and freshwater). It's well written enough to serve as a good introduction to the topic even for people like me with very little marine ecology background. Most of the benefits are fairly obvious, but benefits to climate mitigation (by reducing herbivores that can reduce carbon sequestration and storage) and inspiring products like boat coatings to reduce drag were especially interesting.

REFERENCES:
Armsworth, P. R., Benefield, A. E., Dilkina, B., Fovargue, R., Jackson, H. B., Le Bouille, D., & Nolte, C. (2020). Allocating resources for land protection using continuous optimization: biodiversity conservation in the United States. Ecological Applications, eap.2118. https://doi.org/10.1002/eap.2118

Hammerschlag, N., Schmitz, O. J., Flecker, A. S., Lafferty, K. D., Sih, A., Atwood, T. B., … Cooke, S. J. (2019). Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends in Ecology & Evolution, 34(4), 369–383. https://doi.org/10.1016/j.tree.2019.01.005

Hannah, L., Roehrdanz, P. R., Marquet, P. A., Enquist, B. J., Midgley, G., Foden, W., … Svenning, J. (2020). 30% Land Conservation and Climate Action Reduces Tropical Extinction Risk By More Than 50%. Ecography, 1–11. https://doi.org/10.1111/ecog.05166

Neugarten, R. A., Moull, K., Martinez, N. A., Andriamaro, L., Bernard, C., Bonham, C., … Turner, W. (2020). Trends in protected area representation of biodiversity and ecosystem services in five tropical countries. Ecosystem Services, 42(January), 101078. https://doi.org/10.1016/j.ecoser.2020.101078

Richter, B. D., Bartak, D., Caldwell, P., Davis, K. F., Debaere, P., Hoekstra, A. Y., … Troy, T. J. (2020). Water scarcity and fish imperilment driven by beef production. Nature Sustainability. https://doi.org/10.1038/s41893-020-0483-z

Wilhere, G. F. (2008). The how-much-is-enough myth. Conservation Biology, 22(3), 514–517. https://doi.org/10.1111/j.1523-1739.2008.00926.x

Wilhere, G. F., Maguire, L. A., Scott, J. M., Rachlow, J. L., Goble, D. D., & Svancara, L. K. (2012). Conflation of Values and Science: Response to Noss et al. Conservation Biology, 26(5), 943–944. https://doi.org/10.1111/j.1523-1739.2012.01900.x


Stay safe, vigilant, and healthy,

Jon

p.s. If you'd like to keep track of what I write as well as what I read, I always link to both my informal blog posts and my formal publications (plus these summaries) at http://sciencejon.blogspot.com/

Thursday, March 1, 2018

March 2018 Science Journal Article Summary


Hi,

It has been a hectic month so I haven't read much science. I'm including two articles on beef sustainability (one exciting case study, and one much broader review), as well as a new paper of mine that was finally published after an epic 14 month review. My paper looks at how information about CbD 2.0 spread within TNC and beyond, and while it's long and dense I'd encourage you to at least check out the summary below for tips on how to aid "knowledge diffusion" and how to study it.

BEEF SUSTAINABILITY:
Stanley et al. 2018 is a paper arguing that proper grazing management may be able to make beef a net carbon sink. They don't go quite that far, but it's a reasonable extrapolation. While this is an encouraging case study and we should look carefully at how to apply it, there are some really important caveats to interpreting this more broadly. Specifically, they found using "adaptive multi-paddock (AMP)" grazing for the finishing phase of cattle instead of feeding them grain resulted in a sink of ~6.7 kg CO2e / kg carcass weight, compared to a source of ~6.1 kg CO2e / kg for feedlot beef. The study is designed well, and soil C improvements were measured empirically over 4 years, in three types of soil in the Upper Midwest. That being said, there are a few big issues that challenge the narrative of "carbon positive beef" being possible at wide scales:
  1. The soil sequestration here (3.6 Mg C / ha / yr) is much higher than is typically reported (although some studies have shown similar rates).
  2. These rates would diminish over time; it's not clear how fast the soil would saturate but high rates like this would be most likely in early years after improving management of highly degraded soils.
  3. This study was on alfalfa pasture (which fixes N); it's unlikely these results would apply to unfertilized rangelands
  4. The study did not include soil nitrous oxide emissions which are often substantial in leguminous pastures.
  5. Finally, the grass-finished beef took up twice as much space as the feedlot beef. That could be good from a perspective of prevent conversion of grasslands by keeping them in production, but it also means that if we scaled up grass-finished beef at this density, we'd have to find twice as much land to graze cattle on, which could drive conversion. It would also likely raise costs for producers and consumers.

Garnett et al. 2017 ("Grazed and Confused") is a very thoughtful review of the climate change / GHG impact of ruminants (largely cattle). Their first key findings is that even with good grazing ruminants still have high net GHG emissions. They also note sequestering soil carbon often has trade-offs with methane and nitrous oxide. Finally, as demand for animal protein rises sharply there is likely to be both land conversion and increasing GHGs as a result. These have all been reported widely in other studies, but it's a nice summary. On the one hand, it's hard to pull out quantitative results from this paper. On the other, it does a great job of covering the various arguments and counterpoints around cattle and carbon, and presenting the data in a value-neutral tone. Anyone interested in this topic should at least skim the 8-page summary.

KNOWLEDGE DIFFUSION:
Fisher et al. 2018 ("Knowledge diffusion within a large conservation organization and beyond") looks at how people find information about innovations and share them, specifically the spread of Conservation by Design 2.0 (CbD 2.0). We review how earlier versions of CbD spread from TNC (looking at published science articles and expert interviews), then use tons of varied data to look at CbD 2.0. I wrote a blog about the paper here: http://sciencejon.blogspot.com/2018/03/share-good-news-paper-on-improving.html
and the full paper is at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193716
but here's a summary of what we learned:
  1. Sending repeated broadly-targeted communications (e.g. all-staff email / newsletters / etc.) that make it easy for recipients to find out more worked better than more narrowly focused communications (e.g. plenary talks, emails from executives).
  2. Expert interviews revealed several factors to promote diffusion: bringing in partners early to develop and test methods, committing up front to sustain support for the planning methods, having in-person workshops, using peer-review and shared learning, providing financial support, explaining how the methods address existing needs planners already have, and the existence of a support and learning network like the conservation coaches network (CCNET). 
  3. Organizations may wish to use internal data to identify staff likely to play a key role in diffusing so that they can encourage that process (the paper has details on how, with more forthcoming in an upcoming paper)
  4. Working with academics on publications represents a potential way to get the word out with relatively low effort for organizations (academics I have worked with in other contexts are often very interested in data no one else has access to, and have published cool papers from those data). 
  5. For scientists interested in this topic, we learned a lot about how to study knowledge diffusion, and share tips for researchers (e.g. thinking about image-blocking, legal and privacy constraints, distinguishing internal and external website visits, etc.).

REFERENCES:
Fisher, J. R. B., Montambault, J., Burford, K. P., Gopalakrishna, T., Masuda, Y. J., Reddy, S. M. W., … Salcedo, A. I. (2018). Knowledge diffusion within a large conservation organization and beyond. PLoS ONE, 13(3), 1–24. https://doi.org/10.1371/journal.pone.0193716

Garnett T., Godde C., Muller A., Röös E., Smith P., de Boer I.J.M., Ermgassen E., Herrero M., van Middelaar C., Schader C. and van Zanten H. (2017). Grazed and confused? Ruminating on cattle, grazing systems, methane, nitrous oxide, the soil carbon sequestration question. Food Climate Research Network, University of Oxford http://www.fcrn.org.uk

Stanley, P. L., Rowntree, J. E., Beede, D. K., DeLonge, M. S., & Hamm, M. W. (2018). Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, 162(November 2017), 249–258. https://doi.org/10.1016/j.agsy.2018.02.003

Sunday, October 1, 2017

October science journal article summary

Calf

Here's some science to make your October outstanding! I have a 3-question survey about these summaries that should take a minute or less to answer; please consider taking it (or emailing me if you prefer). I'm trying to get a sense of how often people read them, whether the level of detail is right or not, and get any other feedback people have: https://www.surveymonkey.com/r/BCVDKQR


The focus of this review is on reducing the impacts of animal agriculture (especially cattle). For anyone who missed my June 2016 review, I'll re-recommend Herrero et al 2016 as a fantastic overview of the potential for improving GHG emissions in the livestock sector. Their top picks were improved feed digestibility (including more cereals, distiller's grains, etc. to supplement or replace grass and hay), feed additives, avoiding land use change through intensification, and carbon sequestration from better grazing.


ANIMAL AGRICULTURE:
There a lot of discussion on how to shrink the high carbon footprint of cattle (beef and dairy), and one focal area is on enteric methane (mainly cow burps). Hristov et al 2015 is a study showing that a feed additive (3NOP) was able to reduce dairy methane production by ~30% (with oddly similar impact regardless of the dose) without substantially affecting milk yield (although it increased weight gain by 80% over the 12 week period). This is a relatively small study (48 cows) and it would be see what the impact is throughout the life of dairy cattle (as often gut flora adapts to these kinds of additives over time), but this combined with a couple of similar studies they cite are exciting enough to be worth recommending more trails and pilots.

Kinley et al 2016 is a similar paper looking at a different feed additive (this one based on seaweed). This is only an in vitro study (messing with petri dishes rather than actual cows) but they found adding doses of 2% or greater to a grass diet virtually eliminated methane production. Note that a very similar paper (Machado et al 2015) had similar results, but with two key differences: they saw a strong benefit at 1% dose (where Kinley had a weaker response at that dose), and they also saw some side effects that could impact cattle health at 2% and above. While this was only in vitro and only tested for 3 days, it's still worth investigating and comparing to 3NOP for efficacy and potential positive and negative side effects.

Swain et al 2018 (it came out online early) is a paper from the Breakthrough Institute arguing for a shift to more intensive livestock systems, especially switching from grass-finished to grain-finished beef. They make a number of good points; it's not really debatable that feedlot cattle require less land and time, and most scientists agree the GHG emissions are lower per unit of meat in feedlot systems as well. They briefly discuss some of the potential tradeoffs including animal welfare and antibiotic use and how they might be addressed, and the issue of how to ensure that higher productivity actually leads to land sparing as opposed to driving more habitat conversion. While a good read, there are a few things they don't cover that should also be part of the conversation. One is that in some cases we may actually prefer a high land use footprint, if the grazing lands are high-quality natural grasslands that would otherwise be converted to other uses. But it's still a worthwhile read with good food for thought.

Odadi et al. 2017 (authored by a NatureNet fellow, along with TNC's Joe Fargione) looks at the impact of planned grazing (focus on intensive rotational grazing, but including several other factors) on a variety of outcomes in Kenya. They found substantial improvements in vegetation (cover, species richness and diversity, etc.), presence and richness of wildlife, cattle weight gain during dry periods when they were in poor condition, and the amount of cattle supported per unit of land area. The cool thing to highlight here is that they were able to improve cattle condition as well as wildlife habitat. One critical ingredient to success was more active involvement from pastoralists; this does mean more effort for them but it appears that the benefits make it worth promoting.

AGRICULTURE:

Remember the synthesis of evidence for how several agricultural practices impact a suite of outcomes that Rodd Kelsey led (I sent it out last month)? This month I'm sharing one more 2-page document, which has a great chart summarizing the evidence for each of the practices evaluated on each of the outcomes. If you want to explore more deeply, you can do so at http://www.conservationevidence.com/data/index/?synopsis_id[]=22



REFERENCES:
Herrero, M., Conant, R., Havlik, P., Hristov, A. N., Smith, P., Gerber, P., … Thornton, P. K. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(May), 452–461. https://doi.org/10.1038/nclimate2925

Hristov, A. N., Oh, J., Giallongo, F., Frederick, T. W., Harper, M. T., Weeks, H. L., … Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10663–10668. https://doi.org/10.1073/pnas.1504124112

Kinley, R. D., De Nys, R., Vucko, M. J., MacHado, L., & Tomkins, N. W. (2016). The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Animal Production Science, 56(3), 282–289. https://doi.org/10.1071/AN15576

Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28(2), 1443–1452. https://doi.org/10.1007/s10811-015-0639-9

Odadi, W. O., Fargione, J., & Rubenstein, D. I. (2017). Vegetation, Wildlife, and Livestock Responses to Planned Grazing Management in an African Pastoral Landscape. Land Degradation and Development, (March). https://doi.org/10.1002/ldr.2725

Swain, M., Blomqvist, L., McNamara, J., & Ripple, W. J. (2018). Reducing the environmental impact of global diets. Science of the Total Environment, 610–611, 1207–1209. https://doi.org/10.1016/j.scitotenv.2017.08.125

Tuesday, August 1, 2017

August science journal article summary

Bee (likely female Anthidium manicatum) on anise hyssop

Two significant articles came out in Science in June providing evidence for how neonicotinoids (a type of pesticide used for crop protection) are harming bees in field trials (there is some nuance, but the findings are concerning); I'm including reviews of those plus a few other  articles on the topic of pesticides and bees. Read to the end for an article of cattle intensification in Brazil, and a plea for scientists to write journal articles as if they wanted human beings to actually read and understand them.


BEE HEALTH / NEONICOTINOIDS / PESTICIDES:
If you don't want to read the two new studies, here are three stories about them (the one in the Guardian has more quotes from Syngenta pushing back on the findings, the Greenpeace one has a response to that critique from one of the lead authors). As background, it may help to know that in addition to honeybees (which most people are familiar with, they live in large hives) there are bumblebees (which live in much smaller colonies), and solitary wild bees (like the one shown in the photo above, taken in my garden). So when we talk about impacts of neonicotinoids or other pesticides (fungicides, other insecticides) on bees they are sometimes split by impacts on the colony (whether the colony dies out or not), lethal impacts on individual bees, and sublethal impacts (see below for details). So the science here is much broader than just colony collapse disorder in honeybees, which makes the results a bit more complex. For this summary I'm focusing only on bees as there is less science on impacts on other pollinators like butterflies and flies.
http://www.latimes.com/science/sciencenow/la-sci-sn-bees-pesticides-neonicotinoids-20170629-htmlstory.html
https://amp.theguardian.com/environment/2017/jun/29/pesticides-damage-survival-of-bee-colonies-landmark-study-shows
https://energydesk.greenpeace.org/2017/07/17/syngenta-bayer-ceh-study-neonicotinoids/

Tsvetkov et al. 2017 has three significant findings. The first is that some (not all) apiaries >3km from fields planted with neonicotinoid-treated seed still show neonicotinoids; the pollen analysis indicates that the contaminated pollen is coming from wildflowers (meaning that the neonicotinoids are being taken up by untreated plants relatively far from where the pesticide is applied). The second is that the lethality of neonicotinoids (clothianidin and thiamethoxam in this case) is significantly higher in the presence of a common fungicide called boscalid; boscalid on its own didn't harm bees but it made two neonicotinoids roughly twice as toxic when both pesticides were present in the same field. Third, they demonstrated several specific negative impacts on bees (mortality, "queenlessness," and declines in hygenic behavior) of exposure in the field to neonicotinoids at realistic doses. What makes this study different from earlier work showing harm is that rather than being lab-based they studied actual realistic doses and duration of exposure in the field. The best response to this research is tricky; simply banning neonicotinoids could potentially cause a shift to other pesticides that have been less studied (and may or may not be less toxic), and additional crop losses could potentially drive up food prices and lead to more habitat conversion. So more analysis on the trade-offs is needed, but this also appears to be the strongest evidence yet that in the real world neonicotinoids are harming bees (along with several other factors increasing their susceptibility).

Woodcock et al. 2017 has a lot more replication and their findings are less clear; they looked at 33 sites in the UK, Germany, and Hungary (all oilseed rape aka canola) that had seeds either untreated, treated with clothianidin, or treated with thiamethoxam (in addition to being treated with fungicides, other pesticides, and fertilizer as normal). They were looking for one of several potential impacts on honeybees, bumblebees, and solitary bees. Figure 2 shows how noisy the data is (a * indicates a significant effect); the two neonicotinoids often had a different effect across several metrics, and even stranger while they found negative effects of neonicotinoids in Hungary and the UK on honeybees, they also found positive effects in Germany (plus thiamethoxam had a positive effect on storage cells in the UK despite the negative impact of clothianidin there). They also found that reproductive impacts on wild bees were not well correlated with seed treatment, there was some correlation with total nest neonicotinoid residues (some of which appear to have come from earlier applications that remained in the landscape, indicating that impacts may persist for several years even if neonicotinoid use is halted). While there are some differences across the countries that could help to explain the difference in impacts, it's unclear to me why they would have seen positive impacts on honeybees in Germany, and makes me wonder what other variables may have been present that the researchers may not have accounted for. While this study doesn't present evidence as strong as the Tsvetkov paper, it also doesn't show that neonicotinoids are harmless, which makes me want to see more studies like this with lots of replicates but that are more tightly controlled. The lead author pushed back hard against the response from Bayer and Syngenta that this paper doesn't provide strong evidence of negative impacts: https://energydesk.greenpeace.org/2017/07/17/syngenta-bayer-ceh-study-neonicotinoids/

Rundlöf et al. 2015 is another important study of how neonicotinoids affect bees under real field conditions (as distinct from bees artificially fed neonicotinoids). They found impacts on wild bees (reduced density, total elimination of solitary bee nesting, and reduced bumblebee colony growth and reproduction) but did NOT see impacts on honeybees (unlike Tsvetkov). The authors note that some other research has found that honeybees do better than bumblebees with detoxifying after neonicotinoid exposure, and they also found bumblebees collected a higher percentage of pollen from the crop. Specifically this study looked at the neonicotinoid clothianidin in combination with the pyrethroid (insecticide) b-cyfluthrin and the fungicide thiram, based on common practice in Sweden.

Traynor et al. 2016 is another real-world study that looked at exposure to pesticides (measured by sampling bees, beeswax, and pollen) and how that related to colony survival and queen replacement. This is a complicated one so be warned. They found residues of 93 pesticides, and they provide detailed breakdowns of how common each one was, and how toxic it was to bees at the level detected (estimated via "hazard quotient" or HQ which is a model of lethality). Unsurprisingly, they found that when different pesticides that have the same  method of action (e.g. lumping organophosphates together as they work the same way) occured in the same sample they had a stronger effect. In addition to hazard quotient, they considered total number of pesticides each colony was exposed to, and the number of "relevant" pesticides (the ones at high enough levels they are expected to have a significant effect on bee mortality), and several different ways to measure impacts (it's a rich data set) but primarily having to do with lethality and queen replacement (they don't have the suite of sublethal effects the studies above report on). Anyway, the findings are complicated but they found a strong relationship between the total number of "relevant" pesticides and colony mortality within a month, overall number of pesticides exposed to over the study period was related to colony survival, and HQ was related to queen replacement. The strange thing is that this is a very simplistic model (as the authors acknowledge) but the findings could indicate that there are synergies between pesticides that are currently not well understood. Note that they did NOT find significant concentrations of neonicotinoids in the colony, which on the one hand means they couldn't evaluate the impact on colony health, but on the other hand simply finding low doses in hives is arguably good news. They DID find significant risk from two groups of fungicides (including chlorothalonil) and an insecticide group generally considered "bee-safe" (ecdysone receptor agonists). My take away from this study is that there are likely a ton of confounding effects and syngergies in these real-world studies, and that similar to the finding of Tsvetkov with boscalid and neonicotinoids together being much more toxic than separately, there are likely other combinations we're not aware of. This emphasizes the need for both lab studies to evaluate single chemicals in a controlled environment, but also more real-world studies which get at actual risk but will tend to have a lot more variation.

Simon-Delso et al. 2014 is a Belgian study similar to Traynor, comparing healthy honeybee colonies to colonies with a variety of disorders (e.g. dying out, queen loss, etc.) and looking for possible drivers or associated factors. They found that the virus load was not different between healthy and disordered colonies, and they did not see a relationship between disorders and the total number of insecticides or the total pesticide load (µg/kg). However, they did find a strong relationship between the number of fungicides present and disorders: they built a model estimating that ~26% of colonies without any fungicide would have disorders, vs. ~88% of colonies with 4 different fungicides. They also found that higher cropland area near the apiary increased the chance of disorders, while higher grassland area decreased it. Boscalid, cyprodinil, iprodione, and pyrimethanil were the most commonly detected fungicides; some of these are known to have synergistic effects with some insecticides, and/or to have metabolites which are significantly more toxic than the original formulation.

There's one more really interesting aspect to this research I couldn't resist including, as it provides a provocative twist. There has been a lot of debate and attention to the role of disesase in honeybee colony disorders, in paritcular viruses introduced via Varroa mites (as well as unrelated pathogens like Nosema ceranae). Sánchez-Bayo et al. 2016 is a review summarizing evidence that insecticides (neonicotinoids and fipronil) actually suppress the immune system of bees, so it's not as simple as asking whether the problem is insecticides or disease given the potential synergy. They reinforce the challenges in studying the impacts of a single stressor like neonicotinoids given relationships between Varroa mites, viruses, fungicides, insecticides, and other stressors. This is a well-written and engaging article, and if you're interested in bee diseases it'll be worth your time. If you're short on time skip to Figure 1 (a flow chart of how different stressors are related).


AGRICULTURE (RANCHING):
Merry & Soares-Filho is a study on cattle intensification in the Amazon and caused quite a splash. The authors argue (based on data from the US and Brazil, plus some conjecture about what is likely to occur in Brazil) that intensifying cattle production does not lead to conservation outcomes, BUT that conservation measures (removing land from production, better enforcement of laws, and eliminating subsidies and incentives that encourage expanding pasture) will actually lead to cattle intensification. They also note that aside from land use, intensification in the US has raised additional environmental and animal welfare concerns, and that to some degree significantly reducing beef consumption may be the most sure way to reduce beef impacts. Note that this study only shows data up to 2013, and in the last two years deforestation has substantially increased again in Brazil. As additional context, the CFA project that TNC is working on views deforestation-free corporate committments as the key driving conservation strategy, with support for intensification partly as a way to get buy-in from the cattle sector (who would oppose an approach limited to constraining production) and also to reduce leakage to other places with less regulated supply chains. So while we agree that intensification on its own wouldn't make sense, many TNC staff do see intensification as part of a successful strategy to address deforestation. You can read a story about the study here: https://news.mongabay.com/2017/06/is-intensification-of-beef-production-really-a-solution-to-amazonian-deforestation/


SCIENCE COMMUNICATIONS:
Doubleday and Connell 2017 argue that if scientists put more effort into writing well (not just accurately, but clearly and in a way that captivates readers) it would save us all time in reading these articles, and facilitate better understanding and collaboration. It's not a new point, but they make it well, and I especially like how they provide an alternative version of their abstract written in "The Official Style." They also do a good job talking scientists down from the immediate reaction that writing well means stooping to sensationalism, and provide good examples of the middle path. When I read articles like this, I am inspired, but I definitely will need help in actually overhauling my science papers prior to submission into something that would read well for a broad audience (but will not trigger peer reviewers to dismiss the paper as fluff). I imagine many of the non-scientists reading these summaries would be thrilled if the studies listed were easier to digest!


REFERENCES:
Doubleday, Z. A., & Connell, S. D. (2017). Publishing with Objective Charisma : Breaking Science’s Paradox. Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2017.06.011

Merry, F., & Soares-filho, B. (2017). Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elementa: Science of the Anthropocene, 5(24).

Rundlöf, M., Andersson, G. K. S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., … Smith, H. G. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521(7550), 77–80. https://doi.org/10.1038/nature14420

Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? - A brief review. Environment International, 89–90(January), 7–11. https://doi.org/10.1016/j.envint.2016.01.0091

Simon-Delso, N., Martin, G. S., Bruneau, E., Minsart, L. A., Mouret, C., & Hautier, L. (2014). Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE, 9(7), 1–16. https://doi.org/10.1371/journal.pone.0103073

Traynor, K. S., Pettis, J. S., Tarpy, D. R., Mullin, C. A., Frazier, J. L., Frazier, M., & Vanengelsdorp, D. (2016). Inhive Pesticide Exposome: Assessing risks to migratory honey bees from inhive pesticide contamination in the Eastern United States. Nature Scientific Reports, 6(33207), 1–16. https://doi.org/10.1038/srep33207

Tsvetkov, N., Sood, K., Patel, H. S., Malena, D. A., Gajiwala, P. H., Maciukiewicz, P., … Zayed, A. (2017). Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356(6345), 1395–1397.

Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., … Pywell, R. F. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345), 1393–1395.

Tuesday, November 8, 2016

U.S. Beef Supply Chain - Impacts and Opportunities

Surprisingly, there are very few assessments of the overall environmental impact of beef across the supply chain (looking at all phases of their life). The only ones we've found have a clear bias either favoring industrial systems or grass-finished systems. So, The Nature Conservancy decided to fill that gap with a rapid assessment.
Longhorn
Longhorn in Southwest Missouri from Flickr user Jeff Weese. https://www.flickr.com/photos/jeffweese/3896957110/. Used under Creative Commons license (https://creativecommons.org/licenses/by/2.0/)
We looked at major impacts and opportunities to improve for each of the different production phases: ranch and farm grazing (cow-calf ranches, stockers, backgrounders, etc., when they're roaming about and grazing), feed production (growing hay / silage and row crops to be fed to cattle), feedlots (operation of the feedlot where they're fattened not including growing the feed), and harvest facilities (slaughterhouses).

You can read a bit about the report and our major findings here:

The report can be directly downloaded here:

The most interesting / surprising finding to me was that the grazing phase actually had the biggest impact. The key is that while it's fairly low impact per acre, it's by far both the largest footprint and where cattle spend the most time. So put together we actually see more greenhouse gas emissions, water quality impacts, and wildlife habitat impacts from that grazing phase.

A couple of key notes: Walmart provided funding for this report but had no editorial control or input into the content of the paper. Also, this was a rapid assessment (it took place over 6 months in between other work) by a small team of four scientists, so we do not have all the answers. Some critical issues we didn't have time to assess include impacts of dairy cattle, a comparison of the impact of beef to other protein sources (vegetable and animal), animal welfare and social issues, and the return on investment of different sustainability options (e.g. what would provide the most benefit per dollar spent). That's all important but was too much for us to tackle.

Finally, I occasionally have people ask me "Why should I trust you (as a vegan, or as an environmentalist) to give me accurate information about livestock and agriculture?" My answer is usually the same, which is that I encourage people not to simply trust me: instead look at the work, check my assumptions / calculations / sources, and come to your own decision about whether or not the analysis has merit. My job is to be as honest, accurate, and transparent as possible to make that process easy. Along those lines, I'm happy to take questions / critiques here.

Friday, September 28, 2012

The quickest, easiest way to save water

My latest blog post is essentially an analysis showing that you could shut off your water at home (no toilet, no shower, no washing machine, etc.) and still have less impact than switching from beef to soy once per week. Here's the full article: http://bit.ly/TMjfg6

If you don't like soy you can still have a big impact by switching to other types of beans / lentils / legumes, and an even bigger impact by switching to grains (just be aware that nuts actually have a pretty high water footprint). If you want to look up the water footprint of specific foods, you can browse through a few of them at http://www.waterfootprint.org/?page=files/productgallery, and see a comprehensive list at http://www.waterfootprint.org/Reports/Mekonnen-Hoekstra-2011-WaterFootprintCrops.pdf


For people who don't eat burgers: any 1/3# serving of beef (steak, roast, etc) you swap out for a 1/3# soy burger still saves you about 579 gallons each time. Eating the soy burger instead of a 1/3# serving of pork saves 196 gallons (almost 3 days of home water use), and the soy burger saves 130 gallons over 1/3# serving of chicken (over two days of home water use). If you drink milk, every half gallon of soy milk you buy instead of cow's milk saves 377 gallons of water, which works out to a savings of 47 gallons of water per cup of soy milk. Coconut or oat milk also have low water footprints, but almond milk has a water footprint almost as high as cow's milk.

People interested in the water footprint (how much total water something takes to produce) of various animal products and some plant alternatives should check out http://www.waterfootprint.org/?page=files/Animal-products

It was pointed out to me (in a comment on http://blog.nature.org/2012/10/the-quickest-easiest-way-to-save-water/) that the water use for beef I cited is a global average, and that in the US our beef has a lower water footprint. There is another paper calculating water footprint of livestock by nation (http://www.waterfootprint.org/Reports/Report-48-WaterFootprint-AnimalProducts-Vol1.pdf), and they found that the water footprint for a 150g beef burger in the USA would be 562 gallons rather than 621 . That translates to a savings of 520 gallons of water for each soy burger consumed instead of an American beef burger. That still works out so that eating a soy burger instead of an American beef burger once per week saves more water than the average total indoor water use for a week.

Also, hopefully this goes without saying for people who know me, but unlike some similar figures you may have heard (usually from vegetarian advocacy organizations) this one is based on some really solid science and calculations. While one can debate the methodology used, the water footprint numbers have been validated by other authors (Zimmer & Renault 2003, Oki et al 2003). If you want to check or replicate my work you can download the spreadsheet where I made my calculations (which includes the citations) from http://fish.freeshell.org/green/WaterFootprint.xlsx



Water Footprint / Water Paw